Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Потеря устойчивости тонкостенными конструкциями

Работоспособность нагруженного внешним давлением отсека, как правило, определяется его устойчивостью, причем потеря устойчивости тонкостенных конструкций современных летательных аппаратов обычно происходит в упругой области. Конструктивно такие отсеки выполняются в различных вариантах (рис. 12.14) вафельные оболочки с преобладанием кольцевых ребер (й) оболочки, подкрепленные силовым набором (в основном шпангоутами) (б) оболочки с поперечной гофрировкой (в, г) трехслойные оболочки с несущими слоями из металла  [c.333]


Усложнение моделей оптимизации и применяемых методов расчета конструкций выявило потребность в новых, более мощных, чем методы МП, средствах численной реализации оптимизационных моделей. В связи с этим в рассматриваемый период широкое распространение приобретают методы случайного поиска оптимума, в частности метод планирования многофакторных экспериментов [9, 108, 149 и др.]. В целом рассматриваемый период можно оценить как этап осознания важного прикладного значения теории и методов ОПК из композитов. В пользу этого вывода свидетельствует, во-первых, наблюдаемое смещение акцентов в сторону более глубокого анализа различных аспектов постановки и результатов решения конкретных задач оптимизации, а во-вторых, наметившаяся тенденция к разработке общего подхода к проблеме оптимального проектирования конструкций из композитов [19]. В известной степени упомянутая тенденция нашла свое отражение и в настоящей книге, основу которой составляют результаты, полученные в лаборатории моделирования процессов потери устойчивости тонкостенных конструкций Института механики полимеров АН Латвийской ССР. При этом авторы ни в коей мере не претендуют на полноту изложения всех затронутых в книге вопросов, отчетливо сознавая, что в рамках одной книги это сделать практически невозможно.  [c.13]

ПОТЕРЯ УСТОЙЧИВОСТИ ТОНКОСТЕННЫМИ КОНСТРУКЦИЯМИ  [c.88]

Одно из значений главных сил имеет максимальное значение, другое — минимальное (с учетом знаков), Эти значения используют при конструировании оболочки для определения ее толщины и армирования по условиям прочности бетона и стали, а также по условиям потери устойчивости тонкостенной конструкции.  [c.100]

В процессе выполнения экспериментальной программы [15, 17] опыты велись в условиях, когда статическая составляющая напряженного состояния соответствовала максимально 0,5—0,65 от пределов пропорциональности материала при растяжении или сдвиге. Такое нагружение характерно для ряда практически важных случаев работы элементов конструкций (например, шпилечные и болтовые соединения). Вместе с тем более жесткие и контрастные случаи сложных циклических режимов могут быть получены при нагружении материала за пределами упругости по уровню как циклической, так и статической составляющих напряженного состояния. Для выполнения подобных экспериментов необходимо совершенствование разработанной методики испытаний, прежде всего в связи с необходимостью предотвращения ранней потери устойчивости тонкостенных трубчатых образцов при исходном и циклическом нагружениях.  [c.60]


При расчете баков ракет широко используются результаты экспериментальных исследований. Это касается прежде всего расчетов на устойчивость. Критические напряжения потери устойчивости тонкостенных элементов определяют преимущественно опытным путем. В этой главе рассмотрена приближенная методика расчета на устойчивость основного силового элемента конструкции — цилиндрических обечаек несущих баков. Учитывается влияние внутреннего давления, неравномерности распределения напряжений по сечению. Используются данные экспериментов, служащие для уточнения теоретических формул. Приведена последовательность определения численных значений критических нагрузок для различных подкрепленных и непод-крепленных конструкций баков.. Рассмотрены расчеты на прочность цилиндрических обечаек и днищ разной формы, а также сфероидальных и торообразных баков.  [c.291]

Возможность дополнительных произволов при выборе геометрических масштабов объекта значительно расширяет практические возможности моделирования явлений потери устойчивости тонкостенных элементов конструкций.  [c.139]

Деформации потери устойчивости. Эти деформации вызываются сжимающими напряжениями, образуемыми в процессе нагревания и остывания свариваемых деталей. В стержнях, пластинках, оболочках, обладающих малой жесткостью, сжимающие напряжения могут оказаться критическими и вызвать потерю устойчивой формы равновесия. Вопрос потери устойчивости тонкостенных элементов в процессе сварки теоретически и экспериментально изучается. Все указанные выше деформации имеют место в процессе нагревания деталей. При этом деформации непрерывно изменяются в функции времени и называются температурными. Наибольший интерес для практики представляют остаточные деформации, которые образуются в сварных конструкциях после полного их остывания.  [c.131]

Возникает вопрос о рациональности применения изделия с круглым сплошным или кольцевым сечением с точки зрения его массы. Рациональным считается такое изделие, весь материал которого работает при одинаковых максимально возможных напряжениях (идеальный случай), т. е. то изделие, в котором отсутствуют зоны с низким уровнем напряжений. Такой конструкцией при кручении является стержень с кольцевым поперечным сечением. Уровень средних напряжений будет тем выше, чем больше отношение диаметров а, т. е. чем более тонкостенно сечение. При этом следует помнить о возможности потери устойчивости тонкостенной трубы при кручении.  [c.386]

Устойчивость оболочковых конструкции. Увеличение габаритных размеров и уменьшение толщины стенок выдвигают на первый план повышение поперечной жесткости и предотвращение потери устойчивости конструкций. В случае тонкостенных балок закрытого профиля задача  [c.267]

Обобщая сказанное, следует отметить, что наиболее ярко явление потери устойчивости проявляется в легких тонкостенных конструкциях в сжатых оболочках и топких стенках. Поэто.му при проектировании подобных конструкций одновременно с расчетом на прочность ведется и расчет на устойчивость как отдельных узлов, так и системы в целом.  [c.413]

Внедрение в технику тонкостенных конструкций и создание высокопрочных конструкционных материалов привели к существенному снижению их веса. Это способствовало бурному развитию авиационной и ракетной техники, судостроения, энергетики, технологии и др. Однако чем тоньше элемент конструкции, тем он более гибок, тем в большей мере проявляется его способность к выпучиванию и потере устойчивости при сжатии. Поэтому неустойчивость — это беда (бич) всех тонкостенных конструкций.  [c.317]

Потеря устойчивости означает практически полную потерю несущей способности конструктивного элемента и с этим явлением при проектировании необходимо считаться. Прежде всего следует по возможности избегать такого типа нагрузок, при которых возможна потеря устойчивости. Необходимо принимать и конструктивные меры. Нетрудно заметить, что наиболее ярко явление потери устойчивости проявляется в легких, тонкостенных конструкциях в сжатых оболочках и тонких стенках. Поэтому одной из мер повышения устойчивости является увеличение жесткости конструкции. В практике самолетостроения, ракетостроения и судостроения тонкостенные перегородки, баки, обшивка корпуса подкрепляются специальными профилями. Такая подкрепленная оболочка имеет достаточно высокую жесткость при сравнительно малом весе.  [c.121]


Конструкции из стеклопластиков имеют недостаточную жесткость, использование всего ресурса прочности их часто оказывается невозможным вследствие недопустимо больших перемещений. Тонкостенные конструкции разрушаются обычно вследствие потери устойчивости, а критические нагрузки определяются не прочностью, а модулем упругости. Если соединить титановый элемент с элементом из стеклопластика, например, усилить полку титановой балки элементом из стеклопластика, получится следующее.  [c.685]

Система при потере устойчивости может вести себя по-разному. Обычно происходит переход к некоторому новому положению равновесия, что в большинстве случаев сопровождается большими перемещениями, возникновением пластических деформаций или полным разрушением. В некоторых случаях при потере устойчивости конструкция продолжает работать и выполняет по-прежнему свои основные функции, как, например, тонкостенная обшивка в самолетных конструкциях. Возможны, наконец, и такие случаи, когда потерявшая устойчивость система, не обладая устойчивыми положениями равновесия, переходит в режим незатухающих колебаний.  [c.506]

Улучшение прочностных характеристик традиционных конструкционных материалов и использование новых высокопрочных композиционных материалов обусловило широкое распространение легких, изящных и экономичных тонкостенных конструкций в современном машиностроении. Для таких конструкций роль расчетов на устойчивость в общем цикле прочностных расчетов существенно возросла, ибо разрушение тонкостенной конструкции чаще всего связано с потерей ее общей устойчивости или устойчивости отдельных ее элементов.  [c.5]

Это основное допущение можно трактовать следующим образом. До потери устойчивости упругое тело напряжено, но не деформировано. Такая упрощенная модель упругого тела позволяет исследовать устойчивость большинства тонкостенных силовых конструкций, но не может рассматриваться как универсальная.  [c.37]

В зависимости от реологических свойств материала возможны две существенно различные постановки задач устойчивости тонкостенных элементов при ползучести [42, 44, 49, 51] 1) если материал обладает ограниченной ползучестью (бетон, полимеры), то устойчивость конструкции рассматривается на бесконечном интервале времени и определяется длительная критическая нагрузка [53, 65—68, 70, 73] 2) если материал обладает неограниченной ползучестью (преимущественно металлы при повышенных температурах), то устойчивость рассматривается на конечном интервале времени и критическое время определяется на основе выбранного критерия потери устойчивости.  [c.5]

Тонкостенные оболочечные конструкции широко используются в различных отраслях техники в качестве сосудов давления, уплотнительных и компенсирующих устройств, планеров самолетов и элементов авиационных двигателей, корпусов судов и других транспортных средств. В процессе эксплуатации многие из них часто подвержены интенсивным силовым и температурным воздействиям. Длительное статическое и циклическое деформирование конструкций в этих условиях ведет к прогрессирующему формоизменению, местной или общей потере устойчивости, накоплению повреждений и разрушению их наиболее нагруженных элементов.  [c.151]

Опасность потери устойчивости особенно велика для тонкостенных элементов конструкций типа стержней, пластин и оболочек.  [c.262]

Уравнения геометрически нелинейной теории тонких оболочек служат основой для изучения деформирования, потери устойчивости и закритического поведения гибких тонкостенных конструкций. В отличие от классической линейной теории малых деформаций и перемещений нелинейная теория рассматривает нагружение оболочек, сопровождаемое конечными перемещениями и поворотами материальных элементов.  [c.134]

В том случае, когда сжимающие нагрузки, действующие на такие элементы конструкций, как стойки, колонны, пластины или тонкостенные цилиндры, достигают некоторой критической величины, иногда внезапно происходят изменения их формы — изгибание, сморщивание, искривление или выпучивание. Хотя напряжения, вызываемые приложенными нагрузками, могут быть вполне допустимыми с точки зрения прочности, большие перемещения в результате изменений формы могут привести к потере равновесия и внезапной поломке. Такой вид разрушения обычно называется разрушением вследствие неустойчивости, или выпучивания. Потеря устойчивости обусловлена лишь размерами конструкции и модулем упругости материала и никак не связана с его прочностью. В частности, элемент конструкции из высокопрочной стали заданной длины не может выдержать критической нагрузки, большей, чем элемент таких же размеров и такого же поперечного сечения из низкопрочной стали. Боковое выпучивание продольно сжатых стержней представляет собой имеющий большое практическое значение пример потери устойчивости, исследование которого позволит понять сущность этого явления.  [c.549]

Наконец, следует отметить, что все предыдущие рассуждения относились к общей потере устойчивости стержня как целого, когда форма сечения меняется незначительно. В некоторых случаях (обычно у тонкостенных стержней, таких, как трубы и катаные профили) может происходить местная потеря устойчивости, при которой происходят значительные локальные изменения поперечного сечения. Возможность локального выпучивания должна исследоваться отдельно, и конструкция стержня должна выбираться такой, чтобы под действием нагрузок не происходило ни общей, ни локальной потери устойчивости.  [c.559]


В главе сформулированы и решены некоторые конкретные задачи устойчивости упругих прямых стержней и прямоугольных пластин. Такие задачи встречаются при расчете тонкостенных элементов ракетных конструкций. Рассматриваются три круга вопросов определение критических нагрузок для идеально правильных стержней и пластин, влияние начальных геометрических несовершенств и поведение упругих стержней и пластин после потери устойчивости.  [c.183]

Все задачи рассмотрены в линейно-упругой постановке без учета таких свойств материала, как пластичность и ползучесть. Для расчета многих тонкостенных силовых элементов конструкций такая постановка вполне достаточна. Случаи, когда потеря устойчивости происходит за пределом упругости,.,изложены в III части книги, где приведены расчеты с использованием полуэмпирических корректирующих коэффициентов, учитывающих реальные свойства материала.  [c.184]

При расчете по разрушающим, нагрузкам в основу кладут то значение нагрузки, при котором конструкция теряет несущую способность, разрушается Элементы тонкостенных конструкций, работающие на сжатие, обычно разрушаются в результате потери устойчивости, а элементы, работающие на растяжение, — вследствие достижения напряжениями предела прочности материала.  [c.359]

Метод интегральных спектральных представлений случайных полей дает удовлетворительное описание процессов потери устойчивости и закритического деформирования неидеальных оболочек при определенных ограничениях. К этим ограничениям относится, прежде всего, предположение о слабом влиянии краевых условий на поведение цилиндрических оболочек средней длины, панелей, опирающихся на жесткий контур, и других тонкостенных конструкций с различными способами закрепления. Решение соответствующих задач строят обычно в форме разложения по некоторой системе базисных функций, удовлетворяющих условиям на кромках, с удерживанием конечного не слишком большого числа членов. Упругую оболочку заменяют таким образом дискретной системой, свойства которой характеризуются коэффициентами разложения функций прогибов, напряжений, деформаций.  [c.210]

Постановка и решение нелинейных задач механики деформируемого твердого тела (МДТТ) быстро развиваются в последние годы. К таким задачам относятся, например, задачи математического моделирования процессов формования металлических изделий, об ударном воздействии на корпус автомобиля, о потере устойчивости тонкостенных конструкций и др. Актуальность решения нелинейньЕх задач МДТТ вызвана, в первую очередь, запросами практики. С другой стороны, быстрое развитие вычислительной техники сделало возможным решение сложных нелинейных задач, важных для практического приложения. Среди таковых особенно трудны в теоретическом плане задачи о потере устойчивости и контактных взаимодействиях деформируемых тел. Основная цель книги состоит в представлении современных основ нелинейной механики деформируемого твердого тела и процедур численного решения нелинейных задач.  [c.5]

Примером баков гладкой конструкции могут служить баки ракеты Атлас (рис. 11.1). Баки горючего (керосин) и окислителя (жидкий кислород) представляют собой единый блок длиной около 18 м и диаметром 3 м. В середиие блока имеется полусферическая перегородка — диище, разделяющая емкости для горючего и окислителя. Обечайка бака изготовлена из 23 отдельных секций. Материал обечайки — нержавеющая холоднокатаная сталь с пределом прочности 0i, = 1400 МПа и пределом текучести Ст = 1120 МПа. Толщина стенок переменная в передней части h=0,25 мм у заднего днища Л = 1,1 мм. Во время всего периода эксплуатации, начиная с изготовления, в баках поддерживается избыточное давление рд = 0,07 МПа для предотвращения потери устойчивости тонкостенной обечайки. Во время полета ракеты давление наддува в баке горючего ро 0,42 МПа, в баке окислителя Ро = 0,18 МПа.  [c.292]

В данной главе кратко излагаются вопросы подобия и моделирования применителгзно к исследованиям распределения температур при интенсивном аэродинамическом нагреве конструкций. Рассматриваются критерии термомеханического подобия в задачах теплопрочности. Обсуждаются условия моделирования термической потери устойчивости тонкостенных систем.  [c.202]

Подсистема предназначена для анализа НДС и динамических характеристик, критических нагрузок и форм потери устойчивости тонкостенных осесимметричных оболочечных конструкций, представляющих собой произвольную комбинацию оболочек вращения (модель Кирхгофа—Лява), круговых шпангоутов (модель Кирхгофа—Клебша) и связей.  [c.344]

Жесткость элементов сварных конструкций может уменьшаться вследствие местной потери устойчивости тонкостенных участков, в которых действуют напряжения сжатия. Например, при сжатии Н-образного профиля, показанного на рис. 29, а, более тонкая стенка, имеющая остаточные напряжения сжатия сТсж. может потерять устойчивость, если + Ор б > 0,,р, где а р критические напряжения потери устойчивости в пластине, заделанной по двум длинным сторонам. Сопротивление стенки сжатию, а следовательно,  [c.64]

В этом же направлении значительный интерес представляют исследования /61 — 63/ и теоретические подходы /59, 63, 64/, описывающие влияние дву осности нагр>жения стенки оболочковых конструкций на их предельное состояние Так, например, в /20/ исходя из анализа потери пластической устойчивости тонкостенной оболочки цилиндрической формы, нагруженной вттренним давлением и осевой растягивающей силой, установлены общие закономерности процесса деформирования оболочки и достижения предельного состояния. При этом величина предельного давления, отвечающая стадии потери пластической устойчивости оболочки, определяется по формуле  [c.83]

Как было показано на примере анализа предельного состояния тонкостенных оболочек, для оценки несущей способности оболочек давления, ослабленных мягкими прослойками, достаточно знать величину их контак-гного упрочнения и значение параметра (5, характеризующего момент потери пластической устойчивости рассматриваемых конструкций. Применительно к цилиндрическим толстостенным оболочковым конструкциям, нагруженным внутренним или внешним давлением, определение параметра не представляег особых затруднений н может быть осуществлено по методике, изJЮжeннoй в разделе 4.1  [c.210]

Рассмотренная в задаче система является аналогом тонкостенной панели ВСОЕ (рис. 333), работающей в условиях сдвига. Такого рода элементы типичны для авиационных и ракетных конструкций. При потере устойчивости происходит диагональное образование волн, но панель, потеряв способность нести дополнительную сжимающую нагрузку по диагонали СЕ, успешно воспринимает растягивающие силы, действующие в перпендикулярном направлении.  [c.232]

Приведенных выше соотношениц достаточно лишь для предварительного анализа стержней, работающих на устойчивость. Тонкостенные элементы в виде труб и профилей, образованных из прямоугольных пластин, которые часто используют в ферменных конструкциях, разрушаются в результате местной потери устойчивости.. Задачи устойчивости тонких прямоугольных пластин имеют большое прикладное значение для широкого класса ферменных элементов, рассматриваемых как тонкие, нагруженные по краям пластины [50]. Устойчивость пластин подробно описана в работе Лехницкого [45], где рассмотрено большое число задач при различных условиях опирания. Формулы для определения критических усилий в различных пластинах и трехслойных сотовых панелях приведены в работе [77].  [c.123]


Современный самолет имеет конструкцию полумонококового типа, состоящую из тонкостенных листов или обечаек, подкрепленных балками (фермами) и стрингерами для предотвращения потери устойчивости. Внешняя обшивка или стенка образует аэродинамический контур агрегата — фюзеляжа, крыла, стабилизатора. Элементы жесткости крепятся к внутренней поверхности обшивки и воспринимают сосредоточенные нагрузки. Эта конструкция в течение многих лет служила основным объектом аэронавти-ческих исследований и существенно отличает аппараты от обычных строительных конструкций. История создания и сопутствующие вопросы анализа и расчета тонких оболочек описаны Гоффом [5], который отмечает, что фундаментальное выражение фон Кармана для определения разрушения пластины при продольном изгибе или потере устойчивости имеет вид  [c.40]

Более того, возможны случаи, когда пренебрежение начальными перемещениями, связанными с изгибом системы в докрити-ческом состоянии, приводит к недопустимо большим погрешностям определения критической нагрузки. Например, если в задаче устойчивости сжатой в осевом направлении тонкой цилиндрической оболочки с малыми начальными неправильностями формы (см. гл. 6) не учитывать начальное напряженно-деформированное состояние, вызванное докритическим изгибом оболочки, то можно получить качественно неверный результат. Но тонкостенные элементы правильно спроектированных силовых конструкций в докритическом состоянии обычно работают без заметных изгибов. Изгиб таких элементов — это чаще всего результат потери устойчивости, вызывающий резкий рост напряжений и перемещений в конструкции и приводящий к частичной или полной потере ее работоспособности. Для расчета на устойчивость таких тонкостенных элементов допущение о пренебрежении изменением начальной геометрии вполне оправдано.  [c.38]

УЭ с мягкой характеристикой реализуются в виде тонкостенных конструкций, способных иметь еюсколько форм упругого равновесия, т. е. способных к потере устойчивости исходной формы упругого равновесия. В первом приближении расчеты можно вести по известным выражениям для тонкостенных конструкций из линейноупругого материала (с подстановкой [х = 0,5), так как деформации малы. Однако перемещения достигают значительной величины, и поэтому при определении характеристик приходится решать геометрически нелинейную задачу. В настоящее время имеющиеся расчетные зависимости получены только численным путем Эти результаты не обработаны в виде упрощенных формул и поэтому в данном справочнике не могут быть приведены. Алгоритмы и программы расчета приведены в монографии [21]. В форме безразмерной кривой обработан только случай сжатия тонкостенной трубы.  [c.213]

Использование режима гидродинамического трения при волочении прутков затруднено из-за низких скоростей волочения и значительной доли неустановив-шегося режима, а также из-за плохого выглаживания шероховатости поверхности при волочении тонкостенных труб большое давление смазки может вызвать появление ужимов из-за потери устойчивости трубы. Для возможности осуществления безоправочного волочения труб и волочения на оправке в режиме гидродинамического трения предложен ряд конструкций для принудительной подачи смазки насосами высокого или низкого давления, а также с использованием гидродинамического эффекта [210]. Номинальный зазор между трубой и напорными элементами рекомендуют принимать в пределах от 0,5 до 1,0 мм с учетом допусков на диаметр холоднокатаных труб и градации существующего парка волок [207]. Из-за большой величины зазора регулирование давления смазки осуществляют изменением длины напорного канала.  [c.267]

Анализ закритического поведения аэроуп-ругих систем важен, так как во многих случаях превышение критической скорости флаттера не вызывает мгновенного разрушения конструкции, а приводит к установившимся колебаниям. Характеристики этих колебаний (амплитуды, и частоты) используют для оценки времени функционирования конструкции до разрушения. Необходимо рассматривать конечные деформации и геометрическую нелинейность. Наряду с геометрическими нелинейностями для расчета критических параметров потери устойчивости и поведения конструкции при флаттере в ряде случаев важен учет неупругих свойств материалов и аэродинамических нелинейностей. Учет нелинейных факторов позволяет, в частности, обнаружить статические и динамические формы потери устойчивости при немалых возмущениях, которые могут реализоваться при меньших значениях сжимающих нагрузок и скоростей потока, чем те, которые получаются на основе линейной теории. В тонкостенных конструкциях конечные прогибы вызывают растягивающие усилия в срединной плоскости. Так, рассматривая в качестве модели обшивки бесконечно длинную пластину, лежащую на упругом основании и обтекаемую газом, приходим к уравнению  [c.523]

Значение нагрузки / хл часто представляют в виде причем в ряде случаев коэффициент Кщ, 0,3...0,5 [5J. Для тонких гладких оболочек коэффициент существенно зависит от форм и размеров начальных неправильностей, что приводит к принципиальным трудностям его определения. Но в рационально спроектированных силовых тонкостенных конструкциях, разрушение которых связано с потерей устойчивости, удается добиться стабильного, а иногда и близкого к единице значения коэффициента хл- Достигается это путем использования трехслойных, вафельных, каркасированных, гофрированных оболочек, т.е. таких конструтсций оболочек, в которых существенно увеличивается изгибная жесткость стенки [5].  [c.214]

Как известно, на устойчивость тонких оболочек и их закрити-ческое поведение решающее влияние оказывают начальные неправильности геометрической формы и несовершенство способов закрепления. Начальные неправильности тонкостенных конструкций обусловлены в основном технологическими причинами и имеют, как правило, случайный характер. В общем случае отклонения от идеальной формы представляют собой пространственные случайные поля. Функции, характеризующие поведение конструкций при нагружении, также являются случайными. Таким образом, при изучении потери устойчивости и закритического деформирования тонкостенных конструкций необходима стохастическая постановка задач. При этом в исходных уравнениях должны учитываться геометрические нелинейности тонкостенных элементов, приобретающие существенное значение после потери устойчивости. Рассмотрим в качестве примера задачу о закритических деформациях неидеальной сферической оболочки при всестороннем равномерном сжатии. Для описания деформированной поверхности воспользуемся нелинейными уравнениями теории оболочек типа Маргерра—Власова  [c.197]


Смотреть страницы где упоминается термин Потеря устойчивости тонкостенными конструкциями : [c.414]    [c.191]    [c.140]    [c.31]   
Смотреть главы в:

Несущий каркас кузова автомобиля и его расчет  -> Потеря устойчивости тонкостенными конструкциями



ПОИСК



80 — Потеря устойчивост

Конструкции тонкостенные

Потери в конструкциях

Потеря устойчивости

Устойчивость конструкции

Устойчивость тонкостенных конструкций



© 2025 Mash-xxl.info Реклама на сайте