Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Приближенные методы решения нелинейных уравнений колебаний

Отмеченные выше существенные особенности диссипативных систем, заключающиеся в том, что любые свободные колебания в системе, предоставленной самой себе, неизбежно затухают, приводят к тому, что для количественного рассмотрения свободных колебаний с учетом потерь нельзя без существенных оговорок пользоваться методом последовательных приближений, в котором за нулевое приближение принимается гармоническое движение. Данный метод может применяться лишь для ограниченных временных интервалов в случае достаточной малости затухания, и поэтому его использование с подобными оговорками существенно снижает его практическую ценность. Это заставляет нас в тех случаях, когда не удается найти прямое и точное решение дифференциального уравнения, описывающего систему, искать другие пути нахождения приближенного решения, учитывающего специфику нелинейных диссипативных систем и пригодного для любого интервала времени. Из возможных методов нахождения приближенного решения следует в первую очередь указать на метод поэтапного рассмотрения н, в частности, на кусочно-линейный метод, а также на метод медленно меняющихся амплитуд. Кусочно-линейный метод, пригодный для любых типов трения и нелинейности, основывается на замене общего рассмотрения движения всей системы в целом решением ряда линейных задач — уравнений, приближенно описывающих различные этапы движения системы, на которых ее можно считать более или менее  [c.45]


Решения (VI.26) и (VI.27) уравнений первого приближения представляют собой гармонические колебания гироскопа и не содержат постоянной составляющей собственной скорости прецессии гироскопа. Следуя методу последовательных приближений, найдем второе приближение решения нелинейных дифференциальных уравнений (VI.13) движения гироскопа, определяя его в виде  [c.133]

Итерационный метод уточнения решения уравнений нелинейных колебаний. Для уточнения расчета резонансных режимов, а также нерезонансных режимов от нескольких гармоник момента двигателя может быть применен метод последовательных приближений Ньютона—Канторовича [15]. Для расчетов силовых передач использование этого метода первого порядка наряду с записью уравнений движения в интегральной форме можно признать оптимальным по следующим причинам достигается максимально компактная запись нелинейных уравнений, число которых равно числу нелинейных соединений сходимость метода может быть достигнута при любых параметрах системы за счет выбора начального приближения. Метод Ньютоне— Канторовича обладает максимальной скоростью сходимости для кусочно-линейных функций, какими н являются типичные упругие характеристики силовых передач.  [c.342]

Другой приближенный способ решения — метод статистической линеаризации — является обобщением на стохастические нелинейные задачи метода гармонической линеаризации, применяемого в детерминистической теории колебаний. Нелинейные функции в исходном уравнении заменяются линейными выражениями f и) ku, которые в некотором смысле дают наилучшее приближение. В качестве критериев обычно используют условия равенства дисперсий (f) = k (м ) или минимума среднего квадратического отклонения линейной функции  [c.80]

После усреднения за период получаются укороченные дифференциальные уравнения относительно Л ( и г ) (О, на основании которых составляются соотношения теории марковских процессов. Благодаря введенным упрощениям уравнения типа Колмогорова можно проанализировать при помощи приближенных аналитических или численных методов. Подробное изложение этой методики приводится в ряде работ [18, 29], посвященных решению этого специального класса задач. В отличие от указанных работ в данной монографии развиваются подходы к исследованию нелинейных случайных колебаний без ограничений на интенсивности, масштабы и скорости изменения флуктуаций входных и выходных функций.  [c.38]


О (отсутствуют регулярные крутильные колебания системы). Тогда первое, второе, четвертое и пятое уравнения системы (101), т. е. уравнения, описывающие маятниковые колебания, становятся линейными с постоянными коэффициентами, и их точное решение не представляет трудностей. После этого третье уравнение системы (101) становится нелинейным уравнением с переменными коэффициентами, точное решение которого в аналитическом виде не удается найти. В данном случае оно не зависит от других уравнений системы, и его следует решать каким-либо приближенным методом. В общем случае такое расщепление системы (101) не имеет места, поэтому нахождение ее приближенного решения также представляет собой достаточно сложную задачу. Остроумный метод ее решения, основанный па условном расщеплении системы в сочетании с методом усреднения, предложил В К. Милюков [78]. Суть его состоит в следующем. Составим две подсистемы уравнений первое и четвертое уравнения системы (101) и второе и пятое уравнения. Эти подсистемы описывают маятниковые колебания весов в двух вертикальных плоскостях. После того как в результате решения этих подсистем найдены функции 0i(i)i 02(О, далее решается третье уравнение системы (101), которое описывает крутильные колебания.  [c.83]

Из этой системы связанных уравнений следует исключить плотность инверсии и найти зависимость поляризации от напряженности поля [в предположении, что происходит гармоническое колебание с круговой частотой оао и с комплексной амплитудой ( о)]. Структура уравнений позволяет обнаружить наличие нелинейной зависимости решение этих уравнений можно выполнить методом последовательных приближений. Из первого дифференциального уравнения сначала определяется  [c.291]

В общем случае точное решение нелинейного дифференциального уравнения не может быть получено, поэтому здесь могут быть применены только приближенные методы. В любом случае нелинейные колебания можно описать соответствующим образом подобранными  [c.147]

Это уравнение является нелинейным дифференциальным уравнением и не имеет аналитического решения. В теории колебаний развиты методы, позволяющие решить его приближенно, исследовать условия, при которых возможно самовозбуждение колебаний, и найти амплитуду ар и частоту ю установившихся колебаний  [c.45]

В другом случае, т. е. когда в течение периода колебаний механизма величины реакций в кинематических парах изменяются существенно, задача резко усложняется вследствие того, что обобщенный момент сил трения оказывается нелинейной функцией обобщенной координаты и ее производной. При этом дифференциальное уравнение движения оказывается нелинейным, точное его решение, как правило, получить невозможно и для решения этой задачи во втором приближении обычно приходится обращаться к методам приближенного или численного интегрирования.  [c.193]

В работе [5] изложен аналитический метод определения критических скоростей ротора турбомашины с учетом упругой нелинейности совмещенной опоры. Частоты свободных колебаний ротора, выполненного по двухконсольной схеме (см. рис. 1), определены в результате решения системы нелинейных дифференциальных уравнений движения асимптотическим методом [6] в первом приближении и представлены в виде  [c.132]

В силу (2.109) нелинейные колебания могут быть приближенно описаны линейным уравнением, для решения которого используются уже указанные выше методы. Для собственной круговой частоты мы теперь имеем  [c.72]

Примеры, рассмотренные в этой главе, показали, что метод многих масштабов применим как к задачам, которые могут быть изучены с помощью метода сращивания асимптотических разложений, таким, как задача о космическом корабле Земля—Луна, так и к задачам, которые не могут быть изучены с помощью последнего метода, таким, как задачи о нелинейных колебаниях. Метод многих масштабов дает одно равномерно пригодное разложение в отличие от метода сращивания асимптотических разложений, в котором рассматриваются два разложения, подлежащих сращиванию. Хотя и в методе многих масштабов обыкновенное дифференциальное уравнение преобразуется в дифференциальное уравнение в частных производных, получение первого приближения не представляет больших трудностей, чем решение первого внутреннего уравнения. Однако трудными для  [c.324]


Значительное развитие за последние годы получили приближенные методы решения уравнений теории колебаний (линейной и нелинейной), основанные на вариационных принципах (работы Л. В, Канторовича, 1948—1956 М. А. Красносельского, 1950 и сл, С. Г. Михлина, 1948— 1956 В, М, Фридмана, 1956 и сл,). Обзору, развитию и обоснованию этих методов посвящена монография С, Г, Михлина (1957),  [c.167]

Исследование проблемы о соответствии между свойствами точных и приближенных решений нелинейных дифференциальных уравнений на бесконечно большом интервале времени было произведено также в работе Н. М. Крылова и Н. Н. Боголюбова, Приложение методов нелинейной механики к теории стационарных колебаний, Изд-во АН УССР, 1934.  [c.296]

Точное решение задачи о свободных колебаниях в нелинейных диссипативных системах в подавляющем большинстве случаев наталкивается на весьма большие и очень часто неразрешимые трудности. Поэтому (как и в случае консервативных систем) приходится искать методы приближенного расчета, которые с заданной степенью точности позволили бы найти количественные соотношения, определяющие движения в исследуемой системе при заданных начальных условиях. Из ряда возможных приближенных методов рассмотрим в первую очередь метод поэтапного рассмотрения. Мы уже указывали, что этот метод заключается в том, что в соответствии со свойствами системы все движение в ней заранее разбивается на ряд этапов, каждый из которых соответствует такой области изменения переменных, где исследуемая система с достаточной точностью описывается или линейным дифференциальным уравнением, или нелинейным, но заведомо интегрируемым уравнением. Записав решения для всех выбранных этапов, мы для заданных начальных условий находим уравнение движения для первого этапа, начинающегося с заданных начальных значений. Значения переменных 1, х, у = х) конца первого этапа считаем начальными условиями для следующего этапа. Повторяя эту операцию продолжения решения от этапа к этапу со сшиванием поэтапных решений на основе условия непрерывности переменных х и у = х, мы можем получить значения исследуемых величин в любой момент времени. Если разбиение всего движения системы на этапы основано на замене общей нелинейной характеристики ломаной линией с большим или меньшим числом прямолинейных участков, то подобный путь обычно называется кусочно-линейным методом. В этом случае на каждом этапе система описывается линейным дифференциальным уравнением. Условие сшивания решений на смежных этапах — непрерывность х я у = х — необходимо и достаточно для системы с одной степенью свободы при наличии в ней двух резервуаров энергии и двух форм запасенной энергии (потенциальной и кинетической, электрической и магнитной). Существование двух видов резервуаров энергии является также необходимым условием для возможности осуществления в системе свободных колебательных движений, хотя для диссипативных систем оно недостаточно. При большом затухании система и с двумя резервуарами энергии может оказаться неколебательной — апериодической.  [c.60]

Как известно, задачи динамической устойчивости систем сводятся к решению уравнений Хилла или Матье. Эти уравнения занимают особое место в математическом анализе. Однако точных методов решения уравнений типа Хилла или Матье в настоящий момент не существует. Нет и точных методов исследования переходных процессов в параметрических системах. Поэтому при решении различных задач пользуются всевозможными приближенными приемами, которые с той или иной степенью точности позволяют определить зоны неустойчивости системы, а для нелинейных задач оценить величины амплитуд колебаний.  [c.198]

Метод Бубнова—Галеркина для задач нелинейных колебаний можно представить как прямой метод построения приближенного решения, удовлетворяющего соответствующему дифференциальному уравнению в среднем за цикл колебаний [83]. Действительно, уравнения метода Бубнова—Галеркина вида (182) могут быть получены на основе принципа возможных перемещений [68]. Если считать независимую переменную х временем, выражение (181) для у принять за приближенное выражение установившегося процесса вынужденных колебаний, в котором (х) — координатные функции времени, а,- — параметры, обеспечивающие наилучшее приближение для у , а также положить х = х + г, vrzx — период внешней возмущающей силы, то уравнения (182) допускают простую механическую интерпретацию. Учитывая, что возможные виртуальные перемещения, соответствующие координатным функциям, Ьy = baiWi x), заключаем, что уравнения (182) для определения параметров  [c.118]

Уравнение (109) является нелинейным (содержит члены с 0 и О3), неавтономным (содержит сумму квазигармонических колебаний разных частот), стохастическим (содержит случайную величину b t)). Его решение (точнее, два первых приближения) можно получить методом усреднения Крылова — Боголюбова. Первое приближение для решения уравнения (109) представляет собой квазигармонические колебания с флуктуирующими амплитудой и фазой, частота которых сдвинута по отношению к невозмущенпой частоте (Оз  [c.86]

Представленный нелинейш,ш гидродинамический процесс является многопараметрическим, и его численному моделированию должен предшествовать подробный качественный анализ, который и составляет предмет данного исследования. Это тем более оправдано, что практика численных расчетов разрывных течений доставляет, как известно, осциллирующие решения, которые нуждаются в однозначной физической интерпретации. А именно требуется обнаружить существенные черты исходной задачи, являющиеся причинами нелинейных колебаний в гидродинамической системе. Для исследования краевой задачи (3.6)-(3.14) применяем подход, связанный с приближенным описанием течения с помощью конечномерных динамических систем. Воспользуемся методом Бубнова-Галеркина [112], который приводит исходную задачу к системе обыкновенных дифференциальных уравнений для существенных степеней свободы. Это дает возможность изучрггь бифуркационные ситуации и установить пороги возникновения автоколебаний.  [c.88]


Начала широкому использованию метода Пуанкаре было положено в тридцатых годах текущего столетия работами Л. И. Мандельштама, Н. Д. Папалекси, А. А. Андронова и А. А. Витта. Несмотря на то, что эти исследования были посвящены преимущественно радиотехническим проблемам, обнаруженные в их ходе нелинейные явления (мягкое и жесткое возбуждение колебаний, резонанс п-го рода, затягивание и захватывание) носят универсальный характер. Суш,ественное значение, имела также работа Б. В. Булгакова (1942 г.) о колебаниях квазилинейных систем. Значительное развитие метод Пуанкаре получил в исследованиях И. Г Малкина (1944— 1956 гг.), который впервые систематически рассмотрел важный для приложений случай зависимости порождающего решения от произвольного числа параметров ау, обобщив результаты Пуанкаре, изучившего случай зависимости лишь от одного параметра. И. Г. Малкиным получены уравнения типа (50) и (59) для периодических и почтн-периоднческих решеннй квазилинейных и сильно нелинейных систем уравнений как с аналитическими, так и с неаналитическими правыми частями. Кроме того, изучен важный класс нелинейных систем, близких к так называемым системам А. М. Ляпунова решение уравнений (41) в этом случае может представляться рядами по дробным степеням параметра х. В работе Г. А. Мермана (1952 г.) изучен особый случай, когда уравнения типа (50) или (59) удовлетворяются тождественно, так что определитель вида (51) обращается в нуль показано, что в этом случае параметры порождающего решения следует пытаться найти из условий периодичности следующих приближений.  [c.64]

Уравнение (7.20) нелинейное, ибо неизвестная функция ф входит в него не линейно, а под знаком синуса его нельзя проинтегрировать до конца в элементарных функциях — его точное решение (приведенное в 165 учебника) выражается так называемыми эллиптическими функциями времени ). Ограничиваясь случаем малых колебаний, полагаем приближенна 81пф Ф и приходим к линейному уравнению ф + ф = 0. Такой метод, называемый методом линеаризации, позволяет заменить нелинейное дифференциальное уравнение линейным хотя при такой замене мы получаем не точное решение задачи, а приближенное, справедливое лишь при некоторых ограничениях, тем не менее этот метод весьма широко применяется в физике и в технике. В рассматриваемом случае нет особого смысла находить точное решение математической задачи — оно все равно не будет точным с физической точки зрения, ибо при составлении уравнения (7.20) мы пренебрегаем сопротивлением воздуха и сопротивлением в подвесе маятника.  [c.163]

Метод энергетического баланса. Этот метод, которым мы пользовались при псследовании свободных колебаний систем с нелинейным трением (п. 2 2) позволяет получить приближенное решение задачи о стационарных автоколебаниях квазилинейных систем, движение которых описывается дифференциальным уравнением  [c.216]

Метод последовательных приближений, примененный к решению ура нения (60), может быть использован также в более обш.ем случае уравненв (59). Этот же метод можно применить также и при исследовании негармс нических колебаний, когда нелинейность дифференциального уравнення является следствием нелинейности силы демпфирования ). В качестве примера рассмотрим случай, когда затухание пропорционально квадрату ск<ь рости. Тогда дифференциальное уравнение движения есть  [c.154]

Производя решенне полученной системы дифференциальных уравненнн, методом последовательных приближении получаем форму главных колебаний. Это дает возможность свести решение системы дифференциальных уравненнн к решению одного нелинейного дифференциального уравнення.  [c.321]


Смотреть страницы где упоминается термин Приближенные методы решения нелинейных уравнений колебаний : [c.218]    [c.74]    [c.190]    [c.91]    [c.404]    [c.251]    [c.156]    [c.151]   
Колебания Введение в исследование колебательных систем (1982) -- [ c.170 , c.171 ]



ПОИСК



Колебания Уравнения колебаний

Колебания нелинейные

Метод решения уравнений

Методы колебаний

Методы нелинейного

Методы приближенные

Нелинейность колебаний

Нелинейность уравнений

Приближенное решение нелинейных уравнений

Приближенное решение уравнений колебаний

Приближенные методы решения

Приближенные методы решения нелинейных уравнений

Приближенные методы решения уравнений

Решение нелинейные-Колебания

Решение нелинейных уравнений

Решения метод

Решения приближенные

Уравнение метода сил

Уравнение нелинейное



© 2025 Mash-xxl.info Реклама на сайте