Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Гамильтона — Якоби

Интегралы движения, преобразование Рауса, канонические уравнения Гамильтона, уравнения Якоби— Гамильтона, принцип Гамильтона — Остроградского  [c.372]

Следовательно, к этой последней системе можно приложить методы Гамильтона и Якоби возвращаясь затем к прежней переменной i, получим интегралы системы (1).  [c.429]

Гамильтон, по существу, дал улучшенную математическую формулировку принципа, который был установлен еще в фундаментальных исследованиях Эйлера и Лагранжа предложенная им операция интегрирования по времени также была известна уже Лагранжу. Поэтому название принцип Гамильтона , данное Якоби, не привилось среди ученых прошлого столетня. Оно вошло в употребление, однако, благодаря ряду учебников, появившихся и более позднее время.  [c.139]


Роль дифференциального уравнения в частных производных в теориях Гамильтона и Якоби. В предыдущей главе (гл. VII, п. 9) отмечалось, что впервые в аналитической механике фундаментальное уравнение в частных производных открыл Гамильтон. Он также первый выдвинул идею о фундаментальной функции, из которой можно было бы получить при помощи простых дифференцирований и исключения переменных все механические траектории. Однако первоначальная схема Гамильтона была практически неприменима. Более того, главная функция Гамильтона удовлетворяла двум уравнениям в частных производных. Второе уравнение с точки зрения теории интегрирования является ненужным усложнением. С другой стороны, в теории Якоби требуется найти лишь один полный интеграл основного дифференциального уравнения. В случае систем с разделяющимися переменными такой интеграл может быть найден. Поэтому при поверхностном подходе создается впечатление, что Якоби освободил теорию Гамильтона от ненужного усложнения, приведя ее к схеме, применимой на практике,  [c.291]

Построение главной функции Гамильтона при помощи полного интеграла Якоби. Несмотря на различие подходов, характеризующих теории Гамильтона и Якоби, между W -функцией и 5-функцией имеется определенная связь. Тео-  [c.299]

Другая форма механики, основанная на интегральных принципах, которую придали механике Гамильтон и Якоби, стала основный методом  [c.869]

В 1850 г. Остроградский опубликовал еще один мемуар, содержащий важные результаты по математической теории уравнений движения,— Об интегралах общих уравнений динамики (представлен в 1848 г.). Он показал, что и в более общем случае, когда связи и силовая функция содержат время (этот случай был оставлен в стороне Гамильтоном и Якоби), уравнения движения также могут быть преобразованы в гамильтонову форму.  [c.216]

Одним из важных вопросов механики является задача интегрирования уравнений движения, которые составляют вариационный принцип. Разработка теории интегрирования канонических уравнений принадлежит Гамильтону, К. Якоби и Остроградскому.  [c.216]

В разработку всей этой теории существенный вклад внес М. В. Остроградский. В исследованиях по уравнениям динамики он дал каноническую форму уравнений динамики и установил теоремы о характеристической функции, принимая связи системы зависящими от времени. В работах этого цикла, независимо от Гамильтона и Якоби, он развивает также и теорию того уравнения в частных производных, которое обычно называется уравнением Гамильтона — Якоби. Независимо от Гамильтона и Якоби Остроградский доказал, что задача определения интегралов канонических уравнений эквивалентна нахождению полного интеграла некоторого дифференциального уравнения в частных производных. Все искомые интегралы канонических уравнений можно найти дифференцированием полного интеграла уравнения в частных производных.  [c.217]


Лагранж в Аналитической механике рассматривает именно эту узкую форму принципа наименьшего действия. Однако указание на более широкую форму принципа содержится в его ранней работе где в 13 прямо указывается на то, что полученное Лагранжем в 8 этой статьи соотношение, тождественное с уравнением для изоэнергетической вариации, применимо в случае произвольных сил. Большинство ученых, разрабатывавших этот вопрос после Лагранжа, взяли у него как раз узкую форму принципа (в том числе Гамильтон и Якоби). Лишь Гельмгольц рассмотрел расширенную форму принципа. Однако Гельмгольц не счел нужным проводить отчетливое различие между принципом наименьшего действия в расширенной форме и принципом Гамильтона. Он основывался при этом на том безусловно верном положении, что оба эти принципа эквивалентны уравнению Даламбера и в силу этого являются следствиями друг друга. Тем не менее это не дает права отождествлять их, так как варьирование, применяемое в каждом из этих принципов, производится совершенно различными способами. Оба эти принципа получаются из соотношений при различных специализациях общего способа варьирования.  [c.221]

ГАМИЛЬТОН ОСТРОГРАДСКИЙ ЯКОБИ  [c.2]

Принципы не всегда вносят новое физическое содержание в механику или упрощают практическое решение механических задач. Тем не менее они в ряде случаев более удобны для общего анализа движения механических систем. Так, интегральные принципы Гамильтона и Якоби позволили построить такой метод интегрирования уравнений динамики, благодаря которому было решено много задач, представлявшихся до того неразрешимыми.  [c.501]

Связь, о которой было упомянуто, известна теперь как оптико-механическая аналогия [76]. В явной аналитической форме эта связь отображена в уравнении с частными производными первого порядка, связанном с именами Остроградского, Гамильтона и Якоби.  [c.6]

Результаты, изложенные в этом приложении, принадлежат Гамильтону и Якоби.  [c.232]

Теорема 13 установлена Якоби в 1837 г. Следует заметить, что обратная теорема о том, что решение уравнения с частными производными типа Гамильтона приводится к решению системы обыкновенных дифференциальных уравнений (дифференциальных уравнений характеристик), имеющей в рассматриваемом случае форму Гамильтона, высказана Пфаффом и Коши в развитие еще более ранних исследований Лагранжа и Монжа, еще до того как Гамильтон и Якоби начали заниматься вопросами динамики (Э. Уиттекер [57]). Наиболее эффективный прямой метод решения уравнения Гамильтона— Якоби — это метод разделения переменных полный интеграл есть сумма слагаемых, каждое из которых зависит только от одной из переменных Ж1,. .., ж , I.  [c.77]

Свободная точка единичной массы движется в вертикальной плоскости ху под действием силы тяжести. Составить дифференциальное уравнение в частных производных Якоби— Гамильтона и найти его полный интеграл (ось у направлена вертикально вверх).  [c.376]

Пользуясь результатами, полученными при решении предыдущей задачи, и свойствами полного интеграла уравнения Якоби — Гамильтона, найти первые интегралы уравнений движения точки.  [c.376]

Физический маятник массы М вращается вокруг неподвижной горизонтальной оси. Момент инерции маятника относительно этой оси равен /, расстояние от центра масс маятника до оси равно I. Составить дифференциальное уравнение Якоби — Гамильтона, найти его полный интеграл и первые интегралы движения маятника (нулевой уровень потенциальной энергии взять на уровне оси маятника).  [c.376]

Движение волчка, имеющего одну неподвижную точку О, определяется углами Эйлера ф, 0 и ср. Пользуясь результатами рещения задачи 49.11, составить уравнение в частных производных Якоби — Гамильтона и найти полный интеграл его.  [c.376]

ПРИМЕНЕНИЕ МЕТОДА ОСТРОГРАДСКОГО — ЯКОБИ В СЛУЧАЕ, КОГДА ФУНКЦИЯ ГАМИЛЬТОНА Н ЯВНО ОТ ВРЕМЕНИ НЕ ЗАВИСИТ  [c.384]

Какой вид имеет уравнение Остроградского—Якоби в случае, когда функция Гамильтона явно от времени не зависит  [c.390]

Канонические преобразования могут быть использованы для того, чтобы упростить систему уравнений Гамильтона, сделать ее более удобной для интегрирования. Далее канонические преобразования будут использованы для того, чтобы получить из уравнений Гамильтона иную форму уравнений движения — уравнение в частных производных Гамильтона — Якоби.  [c.312]


Уравнение Гамильтона — Якоби  [c.322]

УРАВНЕНИЕ ГАМИЛЬТОНА - ЯКОБИ 323  [c.323]

В книге дано систематическ(1е и достаточно доступное изложение O HOD аналитической механики В нее включены разделы уравнения Лагранжа, уравнения Гамильтона, теория Якоби, неголономные системы, вариационные принципы и теория возмущений. Приводятся многочисленные примеры, иллюстрирующие применение рассматриваемых методов.  [c.2]

В литературе дифференциальное уравнение (7.9.22) часто называют дифференциальным уравнением в частных производных Гамильтона — Якоби . Это название совершенно справедливо. Несмотря на фундаментальную важность функции расстояния Гамильтона, его первоначальная схема была неприемлема для целей практического интегрирования. Замечательное открытие Гамильтона дало Якоби ключ к каноническим преобразованиям, что в свою очередь расширило рамки применимости метода самого Гамильтона. С помощью функции Якоби S, на которую наложено гораздо меньше условий, можно найти и гамильтонову lF-функцию. Но было бы практически невозможно найти U -фyнкцию непосредственно путем решения двух совместных уравнений в частных производных. Связь между этими двумя теориями будет обсуждаться более подробно в следующей главе.  [c.263]

После того как дифференциальные уравнения движения написаны на основании вариационного принципа Гамильтона, возникает вопрос об их фактической интеграции. Для этой цели Гамильтоном и Якоби систематически развита специальная теория. Эта теория имела особое значение для небесной механики и для классической теории атома Бора—Зоммерфельда. Построение этой теории заключает в себе три последовательных этапа. Прежде всего необходимо найти возможно более простую форму дифференциальных уравнений движения. Эта форма была найдена в канонических уравнениях Галгильтона. Затем надо установить общие законы таких преобразований этих дифференциальных уравнений, при которых они сохраняли бы свою форму. Такими законами оказались канонические преобразования и теория важнейших их инвариантов. Наконец, надо развить собственно теорию интегрирования систем канонических уравнений. Решение этой задачи привело к установлению и интегрированию уравнения в частных производных Гамильтона—Якоби.  [c.827]

Заметим, что в XX в. получила дальнейшее развитие теория интегрирования уравнения Гамильтона — Остроградского — Якоби методом разделения переменных. Т. Леви-Чивита установил критерий возможной классификации соответствующих динамических задач с любым числом степеней свободы. Найденные им общие условия, которым должна удовлетворять функция Гамильтона для того, чтобы уравнение Гамильтона — Остроградского — Якоби интегрировалось в квадратурах методом разделения переменных, легли в основу позднейших исследований. Ф. Далль-Аква составил классификацию указанного характера для систем с тремя степенями свободы.  [c.103]

Теорема Ламберта привлекла заметное внимание. Проиллюстрируем лишь наиболее известные имена. До Ламберта Эйлеру [1] удалось получить частный случай параболических орбит, который, впрочем, можно найти и у Ньютона [5] в несколько ином виде. После того как в 1761 году появилось доказательство Ламберта [1], использующее геометрический синтез , Лагранж [5] первым опубликовал в 1766 году аналитическое доказательство, а в 1778 году — три других [6]. Лаплас [4], Гаусс [3], Гамильтон [4], Якоби [2], Келли [1], Сильвестер [1], Адамс  [c.42]

В этой главе преобладает координатная точка зрения. Развитый Гамильтоном и Якоби аппарат производящих функций канонических преобразований является самым мощным из имеющихся методов интегрирования дифференциальных уравнений динамики. Кроме этого аппарата, глава содержит нечетномерный подход к гамильтоновым фазовым потокам.  [c.205]

Изучение хаотической динамики в системах с сохранением энергии, которое, впрочем, не является основным предметом этой книги, занимает много места в научной литературе. Это направление иногда помешают в разделы, озаглавленные Динамика гамильтоновых систем , что указывает на методы Гамильтона (и Якоби), используемые для решения нелинейных задач для бездиссипатив ных систем с большим числом степеней свободы (см., например, превосходную монографию [110]).  [c.70]

Хотя интегрнрованпе уравнения Остроградского — Якоби (139.1) в общем случае не упрон 1ает решения задачи, тем не менее, как указывалось выше, во многих случаях проще найти полный интеграл уравнения (139.1), а затем и интегралы канонической системы уравнений Гамильтона (132.5).  [c.384]

Она отличается от болыней части ранее изданных курсов теоретической и аналитической механики систематически проведенным подходом, опирающимся на инвариантность и ковариантность законов и уравнений механики по отношению к преобразованиям систем отсчета. На этой идее базируется как и,зложение основных понятий механики, так п обоснование лагранжева и гамильтонова формализма. Большое внимание уделяется leopeMe Э. Нетер и интегральным инвариантам, которые положены в основу изложения теории канонических преобразований и формализма Гамильтона — Якоби.  [c.2]


Смотреть страницы где упоминается термин Гамильтона — Якоби : [c.505]    [c.429]    [c.13]    [c.20]    [c.392]    [c.823]    [c.224]    [c.48]    [c.57]    [c.9]   
Основы оптики Изд.2 (1973) -- [ c.19 , c.665 , c.679 ]



ПОИСК



Волчок вращающийся приложение теоремы Гамильтона Якоби

Вывод уравнения Гамильтона — Якоби

Вывод уравнения Гамильтона—Якоби на основе формулы полной вариации действия

Вынужденные колебания. Частотные характеристиУравнения Гамильтона, Рауса, Уиттекера и Якоби

Гамильтон

Гамильтона интегральный вариационный (вторая форма) в форме Якоби

Гамильтона — Якоби метод

Гамильтона — Якоби метод уравнения

Гамильтона — Якоби теорема

Гамильтона — Якоби теория

Гамильтона — Якоби уравнени

Гамильтона — Якоби уравнение релятивистское

Гамильтона — Якоби уравнение укороченное

Гамильтона — Якоби уравнение частных производных

Гамильтона —Якоби уравнение

Гамильтона —Якоби уравнение полный интеграл его

Гамильтона-Якоби уравнение уравнения Гамильтона-Якоби

Гамильтона—Якоби движения

Гамильтона—Якоби метод теорема

Гамильтона—Якоби метод укороченное

Гамильтонова двухточечная характеристическая или главная функция. Уравнение Гамильтона — Якоби

Гуляев. О переместимости канонических переменных в уравнении Гамильтона — Якоби

ДИФФЕРЕНЦИАЛЬНОЕ УРАВНЕНИЕ В ЧАСТНЫХ ПРОИЗВОДНЫХ ГАМИЛЬТОНА—ЯКОБИ Важная роль производящей функции в задаче о движении

Двухточечная характеристическая функция в пространстве событий и уравнение Гамильтона — Якоби

Дифференциальное уравнение Гамильтона — Якоби

Дифференциальное уравнение Якоби-Гамильтона для главной функции в частных производных

Задачи на применение метода Гамильтона—Якоби

Замечания по теореме Гамильтона — Якоби

Зэк гамильтоново

Интегралы движения, преобразование Рауса, канонические уравнения Гамильтона, уравнения Якоби — Гамильтона, принцип Гамильтона — Остроградского

Интегрирование дифференциального уравнения Гамильтона — Якоби разделением переменных. Теорема Штеккеля

Интегрирование уравнений Гамильтона — Якоби посредством разделения переменных

Интегрирование уравнения Гамильтона — Якоби

Интегрирование уравнения Гамильтона—Якоби для задачи двух тел

Использование теории Гамильтона—Якоби в задаче движения искусственного спутника

Каноническая переменная метод интегрирования Гамильтона — Якоби

Канонические преобразования. Уравнение Гамильтона Якоби Канонические преобразования определение, основной критерий

Канонические преобразования. Уравнение и теорема Остроградского— Гамильтона — Якоби

Канонические уравнения. Теоремы Якоби и Пуассона. Принципы Гамильтона, наименьшего действия и наименьшего принуждения

Лагранжа Гамильтона — Якоби

Лиувилля случай интегрируемости уравне,ний Гамильтона — Якоби

Маятник конический приложение теоремы Гамильтона Якоби

Метод Гамильтона—Якоби и принцип Гюйгенса

Метод Гамильтона—Якоби и теорема Лиувилля о полной интегрируемости

Метод Якоби — Гамильтона интегрирования канонических уравнений Гамильтона

Метод вариации канонических постоянных Производящие функции канонических преобразований Линейные канонические преобразования. Диагонализация гамильтониана. Операторная форма канонических преобразований. Канонические преобразования в классической теории магнитного резонанса Уравнение Гамильтона-Якоби

Метод интегрирования Гамильтона — Якоби

Множитель последний Якоби приложение к гамильтоновой системе с двумя степенями свободы

Общее применение метода Гамильтона — Якоби

Осциллятор в применение теоремы Гамильтона Якоби

Отыскание полного интеграла уравнения Гамильтона—Якоби методом разделения переменных

Первая каноническая форма уравнений относительного движеВторая каноническая форма уравнений относительного движеТретья каноническая форма уравнений относительного движе Уравнение Гамильтона — Якоби. Метод Гамильтона — Якоби

Первые интегралы гамильтоновых систем Теорема Якоби-Пуассона. Уравнения Уиттекера

Поиск решений уравнения Гамильтона — Якоби на ЭВМ. Приложение к ограниченной задаче трех тел

Поле гравитационное движение приложение теоремы Гамильтона — Якоби

Полный интеграл Якоби уравнения Гамильтона — Якоби

Полный интеграл. Теорема Якоби. Метод разделения переменных. Переменные действие-угол. Метод характеристик. Метод Фока. Задача Коши. Классическая механика и квантовая механика. Уравнение Гамильтона-Якоби вр- представлении. Элементы гамильтоновой оптики Каноническая теория возмущений

Построение главной функции Гамильтона при помощи полного интеграла Якоби

Преобразование естественной конгруэнции к прямым линиям с помощью решения уравнения Гамильтона — Якоби

Преобразование координат в уравнениях Гамильтона Правила Якоби, Донкина, Матье

Применение метода Остроградского—Якоби в случае, когда функция Гамильтона Н явно от времени не зависит

Применение метода усреднения к уравнению Гамильтона — Якоби

Примеры применения теоремы Остроградского — Гамильтона — Якоби

Принцип Гамильтона в форме Якоби

Принцип Гамильтона — Остроградског Якоби

Разделение переменных в уравнении Гамильтона — Якоби

Разделение переменных. Метод Гамильтона-Якоби

Разделимость переменных в уравнении Якоби — Гамильтона Теорема Штеккеля

Релятивистское уравнение Гамильтона — Якоб

Решение уравнения Гамильтона—Якоби.Примеры

Роль дифференциального уравнения в частных произвол ных в теориях Гамильтона и Якоби

Случаи интегрируемости уравнения Гамильтона — Якоби методом разделения переменных

Случай Эйлера. Регулярная прецессия (применение метода Гамильтона — Якоби)

Тема 18. Уравнение Гамильтона—Якоби

Теорема Гамильтона — Якоби (доказательство второе)

Теорема Гамильтона — Якоби (доказательство первое)

Теорема Гамильтона—Якоби движения

Теорема Гамильтона—Якоби кинетического момента системы свободных материальных точе

Теорема Гамильтона—Якоби кинетической энергии системы свободных материальных точе

Теорема Гамильтона—Якоби консервативной системы

Теорема Гамильтона—Якоби об устойчивости невозмущенного

Теорема Гамильтона—Якоби положения равновесия

Теорема Гамильтона—Якоби связями

Теорема Остроградского — Гамильтона Якоби

Теорема Якоби о сохранении гамильтоновой

Теорема Якоби об интегрировании дифференциального уравнения Гамильтона в частных производных

Теорема о неприводимости уравнения Гамильтона—Якоби для плоской ограниченной круговой задачи трех тел к уравнению типа Штеккеля

Теорема о существовании полного интеграла уравнения Гамильтона-Якоби

Уравнение Гамильтона Якоби и оптико-механическая аналогия

Уравнение Гамильтона — Якоби в импульсном представлении

Уравнение Гамильтона — Якоби для консервативных и обобщенно консервативных систем

Уравнение Гамильтона — Якоби матричной форме

Уравнение Гамильтона — Якоби нерегулярное решение

Уравнение Гамильтона — Якоби регулярное решение

Уравнение Гамильтона — Якоби случай интегрируемости

Уравнение Гамильтона — Якоби. Теорема Якоби

Уравнение Гамильтона-Якоб

Уравнение Гамильтона-Якоби в обобщенных координатах

Уравнение Гамильтона-Якоби в теории импульсивных

Уравнение Гамильтона-Якоби движений

Уравнение Гамильтона-Якоби для консервативных и обобщенно консервативных систе

Уравнение Гамильтона-Якоби для систем с циклическими

Уравнение Гамильтона-Якоби координатами

Уравнение Гамильтона-Якоби обобщенное

Уравнение Гамильтона—Якоби в декартовых, цилиндриче¦ ских и сферических координатах

Уравнение Гамильтона—Якоби в неинерциальной систем

Уравнение Гамильтона—Якоби в эллипсоидальных переменПонижение порядка системы уравнений плоской ограниченной круговой задачи трех тел

Уравнение Гамильтона—Якоби для угловой скорости

Уравнение Гамильтона—Якоби калорическое

Уравнение Гамильтона—Якоби относительно Земли

Уравнение Гамильтона—Якоби термическое

Уравнение Гамильтона—Якоби центра масс

Уравнение Гамильтона—Якоби энтропии

Уравнение Остроградского — Гамильтона — Якоби

Уравнение Остроградского — Гамильтона — Якоби преобразование Крылова

Уравнение Остроградского — Гамильтона — Якоби частот (характеристическое)

Уравнения Гамильтона — Якоби для систем с циклическими координатами

Характеристики уравнения Гамильтона — Якоби

Частные случаи уравнения Гамильтона — Якоби

Частный интеграл уравнений Гамильтона Якоби уравнения второго порядк

Частный интеграл уравнений Гамильтона — Якоби, вывод инвариантных

Частный интеграл уравнений Гамильтона — Якоби, вывод инвариантных соотношений

Якоби

Якоби Якоби

Якоби-Гамильтона уравнение для главной функции



© 2025 Mash-xxl.info Реклама на сайте