Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Уравнение Гамильтона-Якоби движений

Уравнение Гамильтона—Якоби движения точки Р имеет внд  [c.364]

Обратим теперь внимание на следующее обстоятельство. В координатном пространстве в каждый момент нас интересует положение лишь одной движущейся в нем точки—она определяется мгновенными значениями обобщенных координат рассматриваемой системы. Между тем полный интеграл уравнения Гамильтона — Якоби в каждый момент определяет функцию S, заданную во всем координатном пространстве и имеющую вполне определенное значение в каждой точке этого пространства. В связи с тем, что функция S зависит также и от времени, можно представить себе ее как некоторую поверхность, заданную в координатном пространстве и непрерывно деформирующуюся (или движущуюся). Каким же образом задание функции, определенной на всем пространстве и изменяющейся во времени, может определить движение той единственной точки, которая интересует нас Как связано движение этой точки с деформирующейся поверхностью  [c.324]


И что она зависит от п постоянных а,,. .., а . Как и в первом случае, легко проверить, что неравенство (155) выполнено. Поэтому функция (163) является полным интегралом уравнения Гамильтона— Якоби и, зная ее, можно выписать закон движения в конечной форме.  [c.336]

Знание функции 5 действия по Гамильтону дает возможность найти закон движения системы. Функция 8 удовлетворяет уравнению Гамильтона-Якоби. Тем самым имеется возможность с помощью методов теории уравнений в частных производных исследовать свойства движения динамических систем.  [c.644]

Вернемся к задаче определения закона движения механической системы с помощью полного интеграла уравнения Гамильтона-Якоби. Для симметрии обозначим  [c.649]

Теперь мы можем сформулировать доказанную теорему. Теорема Якоби. Если S(t, qi, а.-) — некоторый полный интеграл уравнения Гамильтона — Якоби (6), то конечные уравнения движения голономной системы с данной функцией Н могут быть записаны в виде )  [c.156]

Заслуга Якоби заключается в том, что, продолжив исследования Гамильтона, он разорвал этот порочный круг. Он показал, что конечные уравнения движения могут быть написаны в виде (9) при помощи произвольного полного интеграла S t, qi, а,) уравнения Гамильтона — Якоби.  [c.159]

Уравнение Гамильтона—Якоби. Для того чтобы иметь уверенность в том, что новые переменные являются величинами постоянными, достаточно потребовать, чтобы преобразованный гамильтониан К был тождественно равен нулю, так кдк тогда новые уравнения движения будут иметь вид  [c.301]

Таким образом, главная функция Гамильтона осуществляет переход к постоянным координатам р и постоянным импульсам а. Решая уравнение Гамильтона — Якоби, мы в то же время получаем решение рассматриваемой механической задачи. Говоря на математическом языке, мы установили соответствие между 2п каноническими уравнениями движения, которые являются обыкновенными дифференциальными уравнениями первого порядка, и уравнением Гамильтона — Якоби, которое является уравнением первого порядка в частных производных. Такое соответствие имеет место не только для уравнений Гамильтона известно, что каждому уравнению первого порядка в частных производных соответствует определенная система обыкновенных дифференциальных уравнений первого порядка. В данном случае эта связь между рассматриваемым уравнением в частных производных и соответствующими каноническими уравнениями может быть объяснена происхождением этих уравнений от общего вариационного принципа — модифицированного принципа Гамильтона.  [c.304]


Переменные действие — угол. Во многих разделах физики важную роль играют системы, движение которых является периодическим. В таких системах нас часто интересуют не столько подробности траекторий их точек, сколько частоты этих движений. Мы сейчас рассмотрим весьма изящный и эффективный метод исследования таких систем, основанный на методе Гамильтона — Якоби. В этом методе в качестве новых импульсов выбираются не постоянные а,-, непосредственно входящие в полный интеграл уравнения Гамильтона — Якоби, а подходящим образом определенные постоянные образующие п независимых функций от 1. Они носят название действий.  [c.316]

С этим согласуется положение, заключающееся в том, что, найдя полный интеграл уравнения Гамильтона—Якоби, соответствующий динамической задаче (консервативной), можно найти общее решение уравнений движения Лагранжа из равенств  [c.302]

Общий интеграл и ход движения. Определив для уравнения Гамильтона — Якоби Н=Е полный интеграл (120), мы получим согласно правилу п. 38 общее решение канонической системы, если, определив значения Wji по формулам (125), подставим полный интеграл в уравнения (74а) п. 88, определяющие траекторию, и в уравнение (74б), определяющее закон движения по этой траектории. Таким образом, принимая во внимание выражение (133 ) для величины и  [c.341]

Чаплыгин С. А. 171 Чаплыгина случай частной интегрируемости уравнений движения 171 Частный интеграл уравнений Гамильтона — Якоби, вывод инвариантных соотношений 307  [c.551]

Уравнение Гамильтона-Якоби. Теория канонических преобразований приводит нас к методу Якоби интегрирования канонической системы уравнений движения  [c.358]

Мы рассмотрели весьма частные случаи, когда специальная структура функции Гамильтона позволяет дать общий конструктивный способ построения общего интеграла уравнения Гамильтона-Якоби. Следует, однако, отметить, что указанные способы разделения переменных применимы к таким важным задачам механики, как задача о гармоническом осцилляторе, задача о движении физического маятника, задача двух тел, задача о движении тяжелого твердого тела вокруг неподвижной точки в случае Лагранжа и др.  [c.365]

Пример 2 (Движение стержня, опирающегося на горизонтальную плоскость и ВЕРТИКАЛЬНУЮ ось). Пусть в однородном поле тяжести движется бесконечно тонкий однородный стержень длиной 21 и массой т. Нижний конец стержня перемещается по гладкой горизонтальной плоскости, а верхний его конец на рассматриваемой стадии движения опирается на гладкую вертикальную ось 0Z (рис. 143). Найдем полный интеграл уравнения Гамильтона-Якоби в этой задаче.  [c.366]

Случай одной степени свободы. Продолжим начатое в п. п. 177-179 изучение некоторых вопросов, связанных с интегрированием консервативных и обобщенно консервативных систем. Будем изучать системы, движения которых обладают описанным ниже свойством периодичности. Для таких систем Делонэ предложил специальный выбор постоянных импульсов а (г = 1, 2,..., п) в характеристической функции Гамильтона п. 178. Эти новые импульсы представляют собой п независимых функций от набора величин появляющихся при нахождении полного интеграла уравнения Гамильтона-Якоби. Они называются действиями (точные определения см. далее) и ниже чаще всего будут обозначаться /. Канонически сопряженные к ним координаты wi называются угловыми переменными. Переменные действие-угол wi весьма удобны для описания движений, обладающих свойством периодичности. Они находят широкое применение в теории возмущений.  [c.371]

Метод Якоби состоит в том, чтобы, не пытаясь прямо интегрировать обыкновенные дифференциальные уравнения движения, разрешить уравнение Гамильтона — Якоби, которое в соответствии с (77.2) имеет вид  [c.251]

ОНТИ, Москва, 1937.— Уравнения Лагранжа и Гамильтона, теория преобразований, уравнение Гамильтона — Якоби, переменные действие—угол, устойчивость, движения твердого тела, возмущения.  [c.440]


Компактный учебник, в котором рассматриваются моменты инерции, неголономные связи, принцип виртуальной работы, динамику частицы и твердого тела, уравнения Лагранжа, Аппеля и Гамильтона, уравнение Гамильтона — Якоби, устойчивость около положения равновесия или равномерного движения. Удар и возмущения.  [c.441]

Зачастую решить уравнение Гамильтона — Якоби трудно, но коль скоро функция S найдена, решение преобразованного уравнения движения тривиально и дается формулами (6.101) и (6.102). Правда, у нас остается еще задача найти исходные и qi, как функции времени, а преобразование от а . и (3/,, к и q нередко довольно сложно (см., например, решение задачи Кеплера в конце этого параграфа).  [c.154]

С помощью уравнения Гамильтона —Якоби и эллиптических координат описать движение заряженной частицы в поле, создаваемом двумя зарядами, закрепленными на конечном расстоянии друг от друга.  [c.180]

Воспользовавшись уравнением Гамильтона — Якоби, показать, что траектория частицы, движение которой описывается гамильтонианом  [c.180]

Допустим, что интересующие нас задачи решаются путем введения переменных действие — угол, т. е. соответствуют уравнению Гамильтона — Якоби с разделяю-Ш.ИМИСЯ переменными (см. 6.2). В целях простоты ограничимся здесь одномерными системами. В конце этого параграфа мы остановимся на том, как можно распространить эту теорию на многомерные системы. Переменные действие— угол, соответствуюш,ие невозмущенной системе с гамильтонианом Яо, обозначим через и w . Уравнения движения решаются методом Гамильтона — Якоби, а функция Гамильтона — Якоби ищется в виде степенного ряда по параметру X,  [c.191]

Замечание. Преобразования, не нарушающие гамильтонову форму уравнений, называются каноническими. Теорема 6.4 о канонических преобразованиях указывает путь интегрирования уравнений движения и непосредственно приводит к уравнению Гамильтона -Якоби.  [c.202]

Для определения закона движения планеты необходимо найти полный интегра уравнения Гамильтона — Якоби  [c.488]

Ограничение содержания аналитической динамики изучением методов решения уравнений движения, нахождением инвариантных соотношений и постоянных движения. Эта тенденция сложилась потому, что весьма эффективными стали методы получения первых интегралов при известном полном интеграле соответствующим образом составленного уравнения в частных производных, например, уравнения Гамильтона—Якоби. К тому же условия каноничности преобразований, составленные для произвольно выбранного гамильтониана преобразованной системы могут привести к интегрируемым уравнениям относительно производящей функции, с помощью которой определяются в дальнейшем первые интегралы канонических уравнений движения. Усилению этой тенденции способствует, причем весьма действенно, всевозрастающее внедрение ЭВМ в учебный процесс.  [c.43]

Пример 3. Развитие теории через непредикативные отношения даёт история обоснования уравнений Гамильтона-Якоби. Первоначально было показано, что уравнению Гамильтона-Якоби удовлетворяет главная функция Гамильтона W), которая позволяет получить конечные уравнения движения.  [c.219]

Кроме того, чтобы получить решение задачи также в традиционном виде, мы распорядимся специальным образом произволом в зависимости производящей функции S(q, а) от а. Функция Н является интегралом уравнений Гамильтона. Мы будем рассматривать только ограниченные движения (см. 4.11) или, иначе говоря, движения с отрицательной энергией Н. В этом случае без дополнительного ограничения общности уравнение Гамильтона-Якоби (5.4.32) можно записать в следующем виде  [c.344]

Задачи построения полного интеграла уравнения Гамильтона — Якоби и общего интеграла канонической системы, как доказывается в теории дифференциальных уравнений, математически эквивалентны. Степень трудности их, вообще говоря, одинакова. Однако может быть отмечен ряд частных случаев, когда уравнение Гамильтона — Якоби может оказаться более податливым, чем каноническая система. Об этом говорится в п. 10.14. Более важно то обстоятельство, что решение (10), получаемое с помощью теоремы Якоби, является каноническим преобразованием, а это, как мы увидим в главе 11, значительно упрощает форму уравнений возмущенного движения.  [c.537]

Существует беоконечное число полных интегралов уравнения Гамильтона—Якоби (132). Каждый из них порождает соответствующее преобразование, т. е. определяет движение, но все они описывают одно и то же движение и различаются лишь тем, как вводятся произвольные постоянные а.  [c.324]

Теорема Якоби обосновывает следующее правило построения закона движения qi(t), рДО по известному полному интегралу уравнения Гамильтона-Якоби S t,ql,..., q ,al,..., а ). Сначгипа разрешается система п уравнений  [c.646]

Как известно из механики, движение материальных частиц может быть определено с помощью уравнения Гамильтона-Якоби, являющегося, как и уравнение (67,3), уравнением в частных производных первого порядка. Аналогичной г 5 ве.1ичииой является гфи этом действие 5 частицы, а производные от действия определяют импульс р и функцию Гамильтона Н (энергию) частицы согласно формулам р = <35/(3г, Н =-—dS/dt, аналогично формулам (67,2). Известно, далее, что уравнение Гамильтона-Якоби эквивалентно уравнениям Гамильтона, имеющим вид р = —dHfdr, v = r = dH/dp. Вследствие указанной аналогии между механикой материальной частицы и геометрической акустикой мы можем непосредственно написать аналогичные уравнения для лучей  [c.366]


Заметим, наконец, что для того, чтобы иметь явные формулы рассмотренного выше канонического преобразования, нет необходимости начинать с уравнений (131), (135), которые предполагают интегрирование уравнения Гамильтона — Якоби удобнее обратиться к интегралам кеплерова движения, которые получаются элементарным путем, и ввести в них, вместо первоначальных эллиптических элементов, аргументы (139).  [c.355]

В содержание книги включен не только традпционньп материал курсов аналитической механики. Значительное место удел-ено применению к задачам механики методов качественной теории дифференциальных уравнений, на современном уровне трактуются вопросы о ра Дсляемости переменных в уравнении Гамильтона — Якоби, дается рассмотрение эргодических теорем, включая теорему Пуанкаре о возвращении нашл свое место несколько отличное от принятого и приспособленное к задачам динамики изложение теории устойчивости движения, включающее теоремы Ляпунова. В заключительных главах, посвященных ограниченной задаче трех тел и задаче трех тел, автору в небольшом объеме удалось дать хорошее представление о постановках и трудностях этой классической в истории точных наук проблемы.  [c.2]

В содержание книги включен не только традиционный материал курсов аналитической механики. Значительное место уделено применению к задачам механики методов качественной теории дифференциальных уравнений, на современном уровне трактуются вопросы о разделимости переменных в уравнении Гамильтона — Якоби, дается рассмотрение эргодических теорем, включая теорему Пуанкаре о возвращении нашло свое место несколько отличное от принятого и приспособленное к задачам динамики изложение теории устойчивости движения, включающее теоремы Ляпунова. В заключительных главах, посвященных ограниченной задаче трех тел и задаче трех тел, автору в небольшом объеме удалось дать хорошее представление о постановках и трудностях этой классической в истории точных наук проблемы. Книга заканчивается теорией периодических орбит. Использование здесь (и в некоторых других местах) простейших понятий и рассужденир теории множеств не может затруднить внимательного читателя.  [c.10]

Воспользовавшись уравнением Гамильтона — Якоби, получить уравнение траектории частицы, движущейся в поле двумерного потенциала U — iilr, описывая движение в координатах и = г- -х, v = r — x.  [c.180]

Разделение мехапич. систем на голономные и неголо-номные весьма существенно, так как к Г. с. применимы многие сравнительно простые ур-ния механики и общие принципы, к-рые не справедливы для неголопом-ных систем. Движение Г. с. может изучаться с помощью Лагранжа уравнений механики, Гамильтона уравнений, Гамильтона — Якоби уравнения, а также с помощью наименьшего действия принципа В форме Гамильтона — Остроградского или Мопертюи — Лагранжа. К Г, с. приложимы также все те общие теоремы механики и дифференциальные вариационные принципы механики, К-рые справедливы и для неголономных систем.  [c.515]

Достаточно привести такой пример в задаче о движении твердого тела вокруг неподвижной точки в случае Эйлера находятся все интегралы динамических уравнений Эйлера и определяются все искомые неизвестные как функции времени. Но уравнение Гамильтона — Якоби в этом случае не интегрируется в квадратурах в углах Эйлера. Да и вообще в задаче о движении твердого тела вокруг неподвижной точки метод Якоби проходит только для случая Лагранжа это показано М. А. Чуевым, работа которого публикуется в данном же сборнике.  [c.8]

Тем более подобные ситуации возможны при распространении метода Гамильтона — Якоби на системы с неголономными связями. Мы проиллюстрировали предложенный нами описанный способ применения метода Гамильтона — Якоби к неголономным системам на примере частного случая задачи Каратеодори — Чаплыгина, а также на примере движения без скольжения однородного шара по горизонтальной плоскости. Для данной задачи уравнение Гамильтона — Якоби было составлено в нормальных неголономных координатах, полный интеграл был найден и с его помощью выявлен один первый интеграл уравнений движения — неизменность проекции угловой скорости шара на вертикаль. Этого было достаточно для решения всей задачи в силу наличия двух дифференциальных уравнений связей, интеграла энергии и вытекавшей из элементарных соображений общей механики прямолинейности движения центра тяжести шара. Наши работы по данному вопросу получили в дальнейшем отклик. В конце сороковых годов итальянский механик Пиньедоли опубликовал статью по данному вопросу с той же методикой. В настоящее время данной проблемой занимались в своих кандидатских диссертациях молодые научные работники (Назнев X. А., Титкова С. И.).  [c.8]

Излагается одно видоизменение известного метода Якоби для решения канонических уравнений движения динамических систем, основанное на свойстве переместимости канонических переменных в уравнении Гамильтона—Якоби. Устанавливается связь производяш,ей функции V с функцией действия по Гамильтону.  [c.119]

Однако в результате возникает порочный круг для написания конечных уравнений движения (закона движения) нужна функция ] , а для составления этой функции нужно знать конечные уравнения движения. Определение полного интеграла в виде главной функции Гамильтона для нахождения закона движения непредикативно по отношению к решению с заданными начальными условиями, которое находится с помощью полного интеграла в виде главной функции Гамильтона. Этот порочный круг разорвал Якоби, показавший, что конечные уравнения могут быть написаны при помощи произвольного полного интеграла 5 уравнения Гамильтона-Якоби (приём расширения множества, в которое включено одно из понятий, участвовавших в непредикативном определении).  [c.220]

Наряду с уравнениями движения Лагранжа и Гамильтона, которые являются обыкновенными дифференциальными уравнениями, существует уравнение в частных-.производных, описывающее движение механической системы в поле обобщенно-потен-циалъных сил при наличии голономных идеальных связей. Этому уравнению, называемому уравнением Гамильтона — Якоби, подчиняется функция действия  [c.399]


Смотреть страницы где упоминается термин Уравнение Гамильтона-Якоби движений : [c.163]    [c.313]    [c.325]    [c.341]    [c.84]    [c.362]   
Теоретическая механика (1999) -- [ c.437 ]



ПОИСК



Гам??л?.то??а Якоби уравнение уравнению

Гамильтон

Гамильтона уравнения

Гамильтона уравнения движения

Гамильтона — Якоби

Гамильтона — Якоби уравнени

Гамильтона —Якоби уравнение

Гамильтона-Якоби уравнение уравнения Гамильтона-Якоби

Гамильтона—Якоби движения

ДИФФЕРЕНЦИАЛЬНОЕ УРАВНЕНИЕ В ЧАСТНЫХ ПРОИЗВОДНЫХ ГАМИЛЬТОНА—ЯКОБИ Важная роль производящей функции в задаче о движении

Зэк гамильтоново

Интегралы движения, преобразование Рауса, канонические уравнения Гамильтона, уравнения Якоби — Гамильтона, принцип Гамильтона — Остроградского

Уравнение Гамильтона-Якоб

Уравнения Якоби

Якоби

Якоби Якоби

Якоби движения



© 2025 Mash-xxl.info Реклама на сайте