Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Гамильтона — Якоби метод уравнения

Преимущество канонических уравнений. — Канонические уравнения Гамильтона благодаря их особенной форме получили большое применение в механике. Это легко понять, если иметь в виду метод Якоби интегрирования уравнений с частными производными первого порядка. Действительно, канонические уравнения механики, которые могут быть написаны в следующей форме  [c.234]


Книга представляет собой углубленный курс классической механики, написанный на современном уровне. Помимо краткого обзора элементарных принципов, в ней изложены вариационные принципы механики, задача двух тел, движение твердого тела, специальная теория относительности, уравнения Гамильтона, канонические преобразования, метод Гамильтона — Якоби, малые колебания и методы Лагранжа и Гамильтона для непрерывных систем и полей. Показывается связь между классическим развитием механики и его квантовым продолжением. Книга содержит большое число тщательно подобранных примеров и задач.  [c.2]

Принципы не всегда вносят новое физическое содержание в механику или упрощают практическое решение механических задач. Тем не менее они в ряде случаев более удобны для общего анализа движения механических систем. Так, интегральные принципы Гамильтона и Якоби позволили построить такой метод интегрирования уравнений динамики, благодаря которому было решено много задач, представлявшихся до того неразрешимыми.  [c.501]

В дальнейшем аналитическое направление пошло отчасти по пути, указанному К. Г. Я. Якоби (1804—1851), который на основе исследований Гамильтона разработал новый метод решения и изучения дифференциальных уравнений задач динамики и, в частности, небесной механики, называемый теперь методом Гамильтона — Якоби.  [c.326]

Отсюда и следует интегрируемость рассмотренных задач, ибо эта форма, как известно, позволяет проинтегрировать соответствующее уравнение Гамильтона — Якоби методом разделения  [c.580]

Теорема 13 установлена Якоби в 1837 г. Следует заметить, что обратная теорема о том, что решение уравнения с частными производными типа Гамильтона приводится к решению системы обыкновенных дифференциальных уравнений (дифференциальных уравнений характеристик), имеющей в рассматриваемом случае форму Гамильтона, высказана Пфаффом и Коши в развитие еще более ранних исследований Лагранжа и Монжа, еще до того как Гамильтон и Якоби начали заниматься вопросами динамики (Э. Уиттекер [57]). Наиболее эффективный прямой метод решения уравнения Гамильтона— Якоби — это метод разделения переменных полный интеграл есть сумма слагаемых, каждое из которых зависит только от одной из переменных Ж1,. .., ж , I.  [c.77]

В главе V продолжается изложение аналитической механики— рассматривается механика Гамильтона. Глава содержит оптико-механическую аналогию, канонические уравнения, вторую форму принципа Гамильтона, канонические преобразования, метод интегрирования канонических уравнений, известный под названием метода Гамильтона — Якоби, и ряд других вопросов.  [c.7]


Решение задач методом Гамильтона — Якоби опирается на разделение переменных в левой части уравнения Гамильтона —Якоби, что позволяет записать полный интеграл при помощи квадратур. Якоби, решая задачу о движении планеты вокруг Солнца (задачу Кеплера), ввел сферические координаты и применил метод разбиения уравнений в частных производных на несколько уравнений, каждое из которых содержит только одну независимую переменную и производную искомого полного интеграла по этой переменной ([38], двадцать четвертая лекция). Далее Якоби распространил метод разбиения на любое число переменных. Вслед за Якоби методы разделения переменных развивали многие авторы, с чем можно познакомиться в [19], т. II, ч. 2, [37]. Однако метод разбиения Якоби является и до настоящего времени основным для интегрирования уравнений в частных производных первого порядка.  [c.331]

ОТЫСКАНИЕ ПОЛНОГО ИНТЕГРАЛА УРАВНЕНИЯ ГАМИЛЬТОНА-ЯКОБИ МЕТОДОМ РАЗДЕЛЕНИЯ ПЕРЕМЕННЫХ ..  [c.174]

Содержащиеся в книге методы анализа систем канонических уравнений Гамильтона включают метод Якоби-Гамильтона, теорию последнего множителя Якоби [70], интегральные инварианты, переменные действие-угол [21, 49, 55]. Для иллюстрации эффективности приложений всего этого арсенала методов в книге даются элементы теории возмущений.  [c.13]

Переход от системы уравнений второго порядка к системе уравнений первого порядка можно осуществлять разными способами, и в результате будут получаться, вообще говоря, различные эквивалентные системы. Среди них особенно простую и симметричную структуру имеет система канонических уравнений Гамильтона. Свойства этих уравнений лежат в основе метода Гамильтона-Якоби исследования движений механических систем, а также современной теории возмущений. Канонические уравнения получаются с помощью преобразования Лежандра.  [c.626]

Знание функции 5 действия по Гамильтону дает возможность найти закон движения системы. Функция 8 удовлетворяет уравнению Гамильтона-Якоби. Тем самым имеется возможность с помощью методов теории уравнений в частных производных исследовать свойства движения динамических систем.  [c.644]

Рассмотренные примеры убеждают, что случаи, когда эффективно работает метод разделения переменных, встречаются достаточно часто. Полезно иметь критерий, устанавливающий факт разделимости переменных на основе анализа структуры уравнения Гамильтона-Якоби. Для систем, кинетическая энергия которых зависит только от квадратов обобщенных скоростей, такой критерий доставляет теорема Штеккеля.  [c.654]

В заключение параграфа отметим, что все рассматривавшиеся ранее возможности интегрирования уравнений движения, основанные на использовании циклических координат, охватываются методом разделения переменных. К ним добавляются еще случаи, когда разделение переменных возможно, хотя координаты и не оказываются циклическими. Тем самым метод Гамильтона-Якоби представляет собой наиболее эффективный метод аналитического интегрирования уравнений движения.  [c.656]

Написать уравнение Гамильтона-Якоби для сферического маятника (см. 3.12). Показать, что это уравнение решается методом разделения переменных.  [c.701]

Большой вклад в разработку новых методов интегрирования дифференциальных уравнений динамики внесли Гамильтон и немецкий ученый Якоби (1804—1851).  [c.16]

Гамильтон показал, что если известен общий интеграл уравнений движения, представленных в канонической форме, то из него можно вывести полный интеграл этого уравнения с частными производными. Якоби дополнил эту теорему, доказав, что, обратно, если известен какой-нибудь полный интеграл этого уравнения с частными производными, то из него можно получить общий интеграл уравнений, движения. Как мы только что говорили, это уравнение с частными производными, которое мы будем называть уравнением Як оби. подобрано таким образом, что уравнения движения (6) являются для него дифференциальными уравнениями характеристик согласно известному методу интегрирования уравнений с частными производными первого порядка. Мы не будем, однако, пользоваться этим методом.  [c.473]


Здесь мы познакомим читателя с методом разделения переменных для нахождения полного интеграла уравнения Гамильтона — Якоби. Этот метод применяется в тех случаях, когда функция Гамильтона Н обобщенно-консервативной системы имеет специальную структуру.  [c.162]

Углубленный курс классической механики долгое время считался обязательной частью учебных планов по физике. Однако в настоящее время целесообразность такого курса может показаться сомнительной, так как студентам старших курсов или аспирантам он не дает новых физических понятий, не вводит их непосредственно в современные физические исследования и не оказывает им заметной помощи при решении тех практических задач механики, с которыми им приходится встречаться в лабораторной практике. Но, несмотря на это, классическая механика все же остается неотъемлемой частью физического образования. При подготовке студентов, изучающих современную физику, она играет двоякую роль. Во-первых, в углубленном изложении она может быть использована при переходе к различным областям современной физики. Примером могут служить переменные действие— угол, нужные при построении старой квантовой механики, а также уравнение Гамильтона — Якоби и принцип наименьшего действия, обеспечивающие переход к волновой механике, или скобки Пуассона и канонические преобразования, которые весьма ценны при переходе к новейшей квантовой механике. Во-вторых, классическая механика позволяет студенту, не выходя за пределы понятий классической физики, изучить многие математические методы, необходимые в квантовой механике.  [c.7]

На этом простом примере можно ясно видеть мощность и изящество метода Гамильтона — Якоби, позволившего нам быстро получить уравнение орбиты и зависимость г от t, что раньше требовало больших выкладок. Разделение переменных в уравнении Гамильтона — Якоби не ограничивается, конечно, тем случаем, когда лишь одна координата является нециклической. Если, например, гамильтониан рассмотренной сейчас точки написать в сферических координатах, то из трех координат циклической будет лишь одна — угол ф. Однако уравнение Гамильтона — Якоби будет и в этом случае допускать разделение переменных (см. 9.7).  [c.316]

Переменные действие — угол. Во многих разделах физики важную роль играют системы, движение которых является периодическим. В таких системах нас часто интересуют не столько подробности траекторий их точек, сколько частоты этих движений. Мы сейчас рассмотрим весьма изящный и эффективный метод исследования таких систем, основанный на методе Гамильтона — Якоби. В этом методе в качестве новых импульсов выбираются не постоянные а,-, непосредственно входящие в полный интеграл уравнения Гамильтона — Якоби, а подходящим образом определенные постоянные образующие п независимых функций от 1. Они носят название действий.  [c.316]

Решите задачу о движении материальной точки в однородном гравитационном поле, пользуясь методом Гамильтона — Якоби. Найдите также уравнение ее траектории.  [c.343]

Однако по причинам, связанным с наблюдениями, астронома интересует не столько форма орбиты, сколько процесс движения по орбите во времени. Метод Гамильтона-Якоби весьма наглядным образом разрешает и этот вопрос, именно, посредством уравнения (44.1)  [c.311]

Решение уравнения в частных производных методом разделения переменных. У нас нет какого-либо общего метода решения уравнений в частных производных. Однако при некоторых особых условиях оказывается возможным найти полный интеграл уравнения Гамильтона — Якоби. Этот специальный класс задач сыграл важную роль в развитии, теоретической физики, так как оказалось, что ряд основных задач теории атома Бора принадлежит к этому классу. В таких задачах одно уравнение в частных производных с п переменными может быть заменено п обыкновенными дифференциальными уравнениями с одной независимой переменной, которые полностью интегрируются. Такие задачи называются задачами с разделяющимися переменными .  [c.275]

Это действительно так, если считать, что основная задача механики состоит лишь в интегрировании уравнений движения. Но такая ограниченная точка зрения была бы несправедливостью по отношению к далеко идущим исследованиям Гамильтона. Пользоваться непосредственно главной функцией Гамильтона действительно нельзя, и приходится прибегать к методу Якоби, но тем не менее главная функция Гамильтона остается важной и интересной функцией и служит гораздо более глубоким целям, чем простое интегрирование канонических уравнений. Поэтому сравнение tt -функции Гамильтона с S-функцией Якоби заслуживает того, чтобы на нем остановиться. Постигнув все тонкости теории Гамильтона, мы придем к заключению, что в теории Гамильтона два уравнения в частных производных столь же необходимы и естественны, как одно уравнение в теории Якоби.  [c.292]

Заметим, что в XX в. получила дальнейшее развитие теория интегрирования уравнения Гамильтона — Остроградского — Якоби методом разделения переменных. Т. Леви-Чивита установил критерий возможной классификации соответствующих динамических задач с любым числом степеней свободы. Найденные им общие условия, которым должна удовлетворять функция Гамильтона для того, чтобы уравнение Гамильтона — Остроградского — Якоби интегрировалось в квадратурах методом разделения переменных, легли в основу позднейших исследований. Ф. Далль-Аква составил классификацию указанного характера для систем с тремя степенями свободы.  [c.103]


В книге дано систематическ(1е и достаточно доступное изложение O HOD аналитической механики В нее включены разделы уравнения Лагранжа, уравнения Гамильтона, теория Якоби, неголономные системы, вариационные принципы и теория возмущений. Приводятся многочисленные примеры, иллюстрирующие применение рассматриваемых методов.  [c.2]

В литературе дифференциальное уравнение (7.9.22) часто называют дифференциальным уравнением в частных производных Гамильтона — Якоби . Это название совершенно справедливо. Несмотря на фундаментальную важность функции расстояния Гамильтона, его первоначальная схема была неприемлема для целей практического интегрирования. Замечательное открытие Гамильтона дало Якоби ключ к каноническим преобразованиям, что в свою очередь расширило рамки применимости метода самого Гамильтона. С помощью функции Якоби S, на которую наложено гораздо меньше условий, можно найти и гамильтонову lF-функцию. Но было бы практически невозможно найти U -фyнкцию непосредственно путем решения двух совместных уравнений в частных производных. Связь между этими двумя теориями будет обсуждаться более подробно в следующей главе.  [c.263]

Задача 1. Решить уравнение в частных производных Гамильтона — Якоби методом разделения переменных для случая однородного гравнтацнонного поля (см. задачу 2, п. 5). Из этого решения получить lF-функцию Гамильтона и показать, что результат совпадает с прежним результатом, когда U -фyнкция строилась на основе полученного предварительно полного решения уравнений движения.  [c.301]

Первые 6 лекций Якоби посвящает изложению основных принципов механики принципу сохранения движения центра тяжести системы, принципу живой силы, принципу площадей и принципу наименьшего действия. С 10-ой лекции Якоби развивает теорию множителя" систем обыкновенных дифференциальных уравнений, являющуюся обобщением теории эйлеров-ского интегрирующего множителя. Якоби показывает каким образом можно в целом ряде случаев построить с помощью последнего множителя" всю систему п независимых интегралов. Изложив подробно теорию этого множителя, Якоби затем применяет ее к решению ряда механических задач. С 19-ой лекции Якоби, исходя из вариационного принципа Гамильтона, излагает тот метод интегрирования уравнения с частными производными первого порядка, который известен под названием метода Якоби-Гамильтона". В следующих лекциях этот метод примендется к ряду задач, взятых главным образом из области небесной механики. В 26 лекции Якоби излагает теорию эллиптических координат и показывает их приложение к разысканию геодезических линий эллипсоида, к задаче построения карт, к выводу основной теоремы Абеля и проч. Наконец, последние лекции Якоби посвящены изложению его классических методов интегрирования нелинейных уравнений в частных производных первого порядка.  [c.4]

Н. Н. Бухгольца, И. М. Воронкова, А. П. Минакова и др. Поэтому в данном сборнике задачи по традиционным разделам механики представлены сравнительно слабо и основное внимание уделяется тем ее разделам, которые еще не нашли достаточно полного отражения в учебной литературе, в частности электромеханическим аналогиям, вариационным принципам, интегральным инвариантам, уравнениям Гамильтона, каноническим преобразованиям, методу Якоби и т. д.  [c.6]

В этой главе преобладает координатная точка зрения. Развитый Гамильтоном и Якоби аппарат производящих функций канонических преобразований является самым мощным из имеющихся методов интегрирования дифференциальных уравнений динамики. Кроме этого аппарата, глава содержит нечетномерный подход к гамильтоновым фазовым потокам.  [c.205]

Как было показано в предыдущих параграфах, применение метода разделения переменных позволяет получить полный интеграл уравнения Гамильтона — Якоби. Однако этот меуод не всегда применим. Поэтому естественно заранее выяснить, при каком виде гамильтоновой функции (или отдельно кинетической и потенциальной энергий) возможно применение метода разде-  [c.166]

Как инструмент для изучения произвольных голономных систем материальных точек получены уравнения Лагранжа второго рода и канонические уравнения Гамильтона [66]. Дается понятие о лагран-жевом формализме [1, 36]. Изучается поведение полной энергии системы в зависимости от структуры обобщенных сил и кинетической энергии. Дается метод циклических координат [5, 58]. Устанавливается, что для голономных систем интегргипы количества движения, кинетического момента и обобщенный интегргия энергии Якоби [70] всегда могут быть представлены как следствие существования соответствующих циклических координат. Указывается на возможность использования аппарата теории групп для поиска интегралов движения [5]. Изложение вариационных принципов Гамильтона и Мопертюи-Лагранжа-Якоби [17, 38, 70] выполнено в соответствии с современной теорией оптимальных процессов [2, 5, 13]. Геометрически наглядная трактовка придана теории малых колеба-  [c.12]

Очерком общих методов интегрирования уравнений динамики заканчивается вторая часть этой книги, содержащая, вместе с ГЛ. I первой части, краткое рассмотрение основ аналитической механики. Оставлен в стороне ряд вопросов, как, например, распространение метода Остроградского — Гамильтона — Якоби на системы с избыточными координатами ) на случай неголоном-ных систем ), колебания с малыми и конечными амплитудами систем при наличии неголономиых связей и т. д.  [c.396]

Разделение переменных. Известны замечательные случаи, когда полный интеграл уравнения Гамильтона — Якоби (7) может быть найден ири помощи разделения переменных. Метод разделения переменных состоит в том, что решение уравнения (7) ищется в виде суммы функци1Г, каждая из которых зависит только от одной из переменных qi,. .., q и времени (и, конечно, произвольных постоянных)  [c.303]

Разделение переменных в уравнении Гамильтона — Якоби. Из содержания предыдущего параграфа может показаться, что метод Гамильтона — Якоби не имеет практических преимуществ, так как вместо решения 2п обыкновенных дифференциальных уравнений он требует решения дифферециального уравнения в частных производных, что, как известно, сложнее. Однако при некоторых условиях переменные уравнения Гамильтона — Якоби можно разделить, и тогда решение задачи удается свести к квадратурам. Именно в этом случае метод Гамильтона — Якоби становится полезным в практическом отношении.  [c.312]

Введение. Мы привели дифференциальные уравнения движения к особенно удобному каноническому виду. Однако наша конечная цель будет достигнута только тогда, когда мы сможем решить эти уравнения. Поскольку нам неизвестен метод непосрественного интегрирования этих уравнений, то приходится идти косвенными путями. Одним из таких путей является метод преобразований координат. Мы пытаемся отыскать такую систему координат в фазовом пространстве, в которой входящая в канонические уравнения функция Гамильтона имела бы настолько простой вид, чтобы уравнения движения могли быть непосредственно проинтегрированы. Естественно, что с этой точки зрения желательно исследовать всю группу преобразований координат, связанных с каноническими уравнениями. Изучение этих канонических преобразований оказывает ценную помощь при интегрировании уравнений механики. Теория канонических преобразований в основном связана с именем Якоби. Хотя он, возможно, и не обладал воображением, присущим Гамильтону, и его усилия были в основном направлены на решение задачи интегрирования уравнений, однако открытие канонических преобразований явилось все же огромным достижением. Получившаяся в результате теория интегрирования сыграла важную рель в развитии современной атомной физики. В далеко идущих исследованиях Гамильтона проблема интегрирования являлась второстепенной задачей.  [c.225]


Метод Делоне для разделения переменных в периодических системах. Метод разделения переменных, если он применим, приводит к получению полного интеграла уравнения Гамильтона — Якоби, необходимого в теории интегрирования Якоби. Полный интеграл уравнения в частных производных первого порядка может принимать множество различных форм. Предположим, что мы имеем какой-то полный интеграл  [c.279]

Якоби (1804—1851). Якоби был одним из немногих математиков, которые сразу поняли необычайную важность и красоту методов Гамильтона. Якоби развил теорию преобразований канонических уравнений, называемую теорией канонических преобразований . Он интепретировал на ос-  [c.391]


Смотреть страницы где упоминается термин Гамильтона — Якоби метод уравнения : [c.505]    [c.412]    [c.20]    [c.301]    [c.265]    [c.815]    [c.363]    [c.356]   
Классическая механика (1975) -- [ c.301 , c.312 ]



ПОИСК



Гам??л?.то??а Якоби уравнение уравнению

Гамильтон

Гамильтона уравнения

Гамильтона — Якоби

Гамильтона — Якоби метод

Гамильтона — Якоби уравнени

Гамильтона —Якоби уравнение

Гамильтона-Якоби уравнение уравнения Гамильтона-Якоби

Зэк гамильтоново

Метод Гамильтона

Метод Якоби

Метод Якоби — Гамильтона интегрирования канонических уравнений Гамильтона

Метод вариации канонических постоянных Производящие функции канонических преобразований Линейные канонические преобразования. Диагонализация гамильтониана. Операторная форма канонических преобразований. Канонические преобразования в классической теории магнитного резонанса Уравнение Гамильтона-Якоби

Отыскание полного интеграла уравнения Гамильтона—Якоби методом разделения переменных

Первая каноническая форма уравнений относительного движеВторая каноническая форма уравнений относительного движеТретья каноническая форма уравнений относительного движе Уравнение Гамильтона — Якоби. Метод Гамильтона — Якоби

Полный интеграл. Теорема Якоби. Метод разделения переменных. Переменные действие-угол. Метод характеристик. Метод Фока. Задача Коши. Классическая механика и квантовая механика. Уравнение Гамильтона-Якоби вр- представлении. Элементы гамильтоновой оптики Каноническая теория возмущений

Применение метода усреднения к уравнению Гамильтона — Якоби

Случаи интегрируемости уравнения Гамильтона — Якоби методом разделения переменных

Уравнение Гамильтона-Якоб

Уравнение метода сил

Уравнения Якоби

Якоби

Якоби Якоби



© 2025 Mash-xxl.info Реклама на сайте