Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Тема 18. Уравнение Гамильтона—Якоби

Обратим теперь внимание на следующее обстоятельство. В координатном пространстве в каждый момент нас интересует положение лишь одной движущейся в нем точки—она определяется мгновенными значениями обобщенных координат рассматриваемой системы. Между тем полный интеграл уравнения Гамильтона — Якоби в каждый момент определяет функцию S, заданную во всем координатном пространстве и имеющую вполне определенное значение в каждой точке этого пространства. В связи с тем, что функция S зависит также и от времени, можно представить себе ее как некоторую поверхность, заданную в координатном пространстве и непрерывно деформирующуюся (или движущуюся). Каким же образом задание функции, определенной на всем пространстве и изменяющейся во времени, может определить движение той единственной точки, которая интересует нас Как связано движение этой точки с деформирующейся поверхностью  [c.324]


Знание функции 5 действия по Гамильтону дает возможность найти закон движения системы. Функция 8 удовлетворяет уравнению Гамильтона-Якоби. Тем самым имеется возможность с помощью методов теории уравнений в частных производных исследовать свойства движения динамических систем.  [c.644]

Рассмотренный пример показывает, что задача о поиске полного интеграла решается неоднозначно. Полный интеграл не дает общего решения уравнения Гамильтона-Якоби, охватывая лишь небольшую часть решений. Тем не менее по полному интегралу можно восстановить исходное уравнение. Действительно, дифференцируя полный интеграл, получим  [c.648]

Отметим сходство между полученным решением и тем, которое следует из теоремы 9.4.2 о полном интеграле уравнения Гамильтона-Якоби.О  [c.680]

Замечание. Общее решение уравнения в частных производных зависит от нескольких произвольных функций. Поэтому полный интеграл уравнения Гамильтона — Якоби отнюдь не является общим решением. Полный интеграл по сравнению с общим решением охватывает только небольшую горстку решений. Тем не менее по полному интегралу можно восстановить исходное уравнение (отсюда и название полный интеграл ). Действительно, дифференцируя полный интеграл, получаем  [c.157]

На этом простом примере можно ясно видеть мощность и изящество метода Гамильтона — Якоби, позволившего нам быстро получить уравнение орбиты и зависимость г от t, что раньше требовало больших выкладок. Разделение переменных в уравнении Гамильтона — Якоби не ограничивается, конечно, тем случаем, когда лишь одна координата является нециклической. Если, например, гамильтониан рассмотренной сейчас точки написать в сферических координатах, то из трех координат циклической будет лишь одна — угол ф. Однако уравнение Гамильтона — Якоби будет и в этом случае допускать разделение переменных (см. 9.7).  [c.316]

Тем не менее, можно попытаться написать волновое уравнение, для которого уравнение Гамильтона — Якоби является своего рода пределом при Я->0, Сходство между уравнениями (9.94) и (9.83) не означает, конечно, что величине L должно соответствовать именно W, так как оно может соответствовать величине, пропорциональной L. Мы увидим, что коэффициент  [c.341]

В предыдущем параграфе мы убедились в том, что вполне возможно выбрать совокупность канонически сопряженных переменных, соблюдая следующие требования а) гамильтониан системы является функцией только половины переменных, и б) для периодических систем, уравнение Гамильтона — Якоби которых может быть решено методом разделения переменных, можно выбрать угловые переменные таким образом, что они изменяются за период на единицу. Причины, по которым вводятся переменные такого вида, что гамильтониан зависит лишь от половины из них, более или менее очевидны, но причины введения переменных действие — угол значительно хитрее. II действительно, эти переменные оказались на авансцене лишь с возникновением старой квантовой механики, и причина возникшего к ним интереса была связана с тем, что переменные действия оказались так называемыми адиабатическими инвариантами. Мы определим  [c.172]


Введение уравнения Гамильтона — Якоби обусловлено тем, что мы хотим найти такое каноническое преобразование (3), чтобы в преобразованной канонической системе (2) гамильтониан был тождественно равен нулю Н 0. Если это имеет место, то  [c.200]

Указанное видоизменение метода Гамильтона — Якоби, кроме содержащихся в нем возможностей упрощения уравнения Гамильтона — Якоби в форме (3), обладает еще и тем преимуществом, что позволяет непосредственно, сразу получить обобщенные координаты 71, 72,..., qn рассматриваемой системы.  [c.62]

Название — полный интеграл — оправдано тем обстоятельством, что при переходе функция Гамильтона уравнение Гамильтона-Якоби полный интеграл, — не происходит потери информации. По полному интегралу 3(1,Ц1,...,Цп,а1,...,ап) вычисляются равенства  [c.176]

Здесь мы сразу узнаем систему уравнений, в формализме Гамильтона описывающих траектории материальной точки. Тем самым утверждение, что траектории являются характеристиками уравнения Гамильтона — Якоби, доказано.  [c.77]

Будем рассматривать обобщенно-консервативные системы, т. е. такие системы, у которых функция Гамильтона не зависит явно от времени и, следовательно, существует обобщенный (или обычный) интеграл энергии ). Кроме того, предположим, что существует хотя бы одна система обобщенных координат, при которой переменные в уравнении Гамильтона — Якоби разделяются. Относительно движения самой системы материальных точек и тел предположим, что оно условно-периодическое. Это означает, что при финитном изменении координат каждая пара канонически сопряженных переменных 9 -, изменяется периодически с одним и тем же периодом, следовательно, траектория изображающей точки в каждой плоскости ( 1, р1) будет замкнутой кривой. И если  [c.348]

Структурные аналогии ряда тем аналитической механики выступают ярче, если в основу выводов положить формулу первой вариации функционала. На этом пути структурно объединяются такие, казалось бы, разные вопросы, как вариационный принцип Гамильтона—Остроградского, принцип Эйлера—Лагранжа, законы сохранения мер движения в ньютоновской механике - сохранение количества движения, механической энергии и момента количества движения, закон сохранения обобщенного импульса и обобщенный закон сохранения энергии в аналитической механике, интегральные инварианты динамики, уравнения Гамильтона — Якоби и др.  [c.281]

В заключение параграфа отметим, что все рассматривавшиеся ранее возможности интегрирования уравнений движения, основанные на использовании циклических координат, охватываются методом разделения переменных. К ним добавляются еще случаи, когда разделение переменных возможно, хотя координаты и не оказываются циклическими. Тем самым метод Гамильтона-Якоби представляет собой наиболее эффективный метод аналитического интегрирования уравнений движения.  [c.656]

Полученное решение весьма примечательно. Оно имеет в точности такую же форму, какая получается при решении задачи с помош ью теоремы Гамильтона — Якоби. Связь между двумя этими способами решения обусловлена тем, что К (gi, qz, h, а) есть полный интеграл модифицированного уравнения в частных производных (16.5.6).  [c.455]

Если с помощью теоремы Гамильтона — Якоби получить решение первой задачи задачи о гармоническом осцилляторе), то решение второй задачи будет отличаться только тем, что а и Р более не будут постоянными, а будут определяться общим решением уравнений (25.2.3).  [c.509]

В уравнении Гамильтона переменными, которые определяют движение механической системы, являются обобщенные координаты q и обобщенные моменты р. Гамильтонова функция W(p, q), которая входит в гамильтоновы уравнения, обычно является функцией обеих этих переменных. Если мы преобразуем переменные q и р в новые переменные q и р посредством какого-либо произвольного преобразования, общая форма гамильтоновых уравнений изменится. Однако Якоби показал, что существует некоторое преобразование, отличающееся тем свойством, что оно оставляет форму этих уравнений неизменной. Так как уравнения Гамильтона часто называются каноническими уравнениями динамики, то указанным преобразованиям было дано наименование канонических преобразований. Канонические преобразования представляют собой специальный случай касательного преобразования. Касательное преобразование в трехмерном пространстве определяется так  [c.915]

Ясно, что если е = О, то величины Qi и Д в силу уравнений движения будут постоянными. Тем самым мы еще раз доказали теорему 9.4.2 Якоби. Закон движения, соответствующий функции Гамильтона Но, имеет вид преобразования координат, в котором изменяется только 1, а величины а,-, Д, г = 1,..., 71 принимаются постоянными. Закон движения с функцией Гамильтона Я дается точно такими же формулами, что и закон движения с функцией Гамильтона Но, но координаты 1,..., о , Д,..., Д заменяются решением системы канонических уравнений с функцией Гамильтона еНх.  [c.696]

Введение. Принцип наименьшего действия и его обобщение, произведенное Гамильтоном, переводят задачу механики в область вариационного исчисления. Уравнения движения Лагранжа, вытекающие из стационарности некоторого определенного интеграла, являются основными дифференциальными уравнениями теоретической механики. И тем не менее мы еще не достигли конца пути. Функция Лагранжа квадратична по скоростям. Гамильтон обнаружил замечательное преобразование, делающее функцию Лагранжа линейной по скоростям при одновременном удвоении числа механических переменных. Это преобразование применимо не только к специальному виду функции Лагранжа, встречающемуся в механике. Преобразование Гамильтона сводит все лагранжевы задачи к особенно простой форме, названной Якоби канонической формой. Первоначальные п дифференциальных лагранжевых уравнений второго порядка заменяются при этом 2га дифференциальными уравнениями первого порядка, так называемыми каноническими уравнениями , которые замечательны своей простой и симметричной структурой. Открытие этих дифференциальных уравнений ознаменовало собой начало новой эры в развитии теоретической механики.  [c.190]


Это действительно так, если считать, что основная задача механики состоит лишь в интегрировании уравнений движения. Но такая ограниченная точка зрения была бы несправедливостью по отношению к далеко идущим исследованиям Гамильтона. Пользоваться непосредственно главной функцией Гамильтона действительно нельзя, и приходится прибегать к методу Якоби, но тем не менее главная функция Гамильтона остается важной и интересной функцией и служит гораздо более глубоким целям, чем простое интегрирование канонических уравнений. Поэтому сравнение tt -функции Гамильтона с S-функцией Якоби заслуживает того, чтобы на нем остановиться. Постигнув все тонкости теории Гамильтона, мы придем к заключению, что в теории Гамильтона два уравнения в частных производных столь же необходимы и естественны, как одно уравнение в теории Якоби.  [c.292]

Лагранж в Аналитической механике рассматривает именно эту узкую форму принципа наименьшего действия. Однако указание на более широкую форму принципа содержится в его ранней работе где в 13 прямо указывается на то, что полученное Лагранжем в 8 этой статьи соотношение, тождественное с уравнением для изоэнергетической вариации, применимо в случае произвольных сил. Большинство ученых, разрабатывавших этот вопрос после Лагранжа, взяли у него как раз узкую форму принципа (в том числе Гамильтон и Якоби). Лишь Гельмгольц рассмотрел расширенную форму принципа. Однако Гельмгольц не счел нужным проводить отчетливое различие между принципом наименьшего действия в расширенной форме и принципом Гамильтона. Он основывался при этом на том безусловно верном положении, что оба эти принципа эквивалентны уравнению Даламбера и в силу этого являются следствиями друг друга. Тем не менее это не дает права отождествлять их, так как варьирование, применяемое в каждом из этих принципов, производится совершенно различными способами. Оба эти принципа получаются из соотношений при различных специализациях общего способа варьирования.  [c.221]

Существует беоконечное число полных интегралов уравнения Гамильтона—Якоби (132). Каждый из них порождает соответствующее преобразование, т. е. определяет движение, но все они описывают одно и то же движение и различаются лишь тем, как вводятся произвольные постоянные а.  [c.324]

Нетрадиционно освещается ряд тем кинематика, общие теоремы динамики, вывод уравнений Лагранжа, уравнение Гамильтона — Якоби. Часть материала выходит за рамки университетского курса элементы теории линейных и квадратичных по скоростям интегралов, применение вариационных принципов, новое доказательство теоремы Дарбу о канонических координатах. В книгу включены задачи, иллюстрирующие и дополняющие теоретический материал, даны методические указания к ним.  [c.2]

Тем более подобные ситуации возможны при распространении метода Гамильтона — Якоби на системы с неголономными связями. Мы проиллюстрировали предложенный нами описанный способ применения метода Гамильтона — Якоби к неголономным системам на примере частного случая задачи Каратеодори — Чаплыгина, а также на примере движения без скольжения однородного шара по горизонтальной плоскости. Для данной задачи уравнение Гамильтона — Якоби было составлено в нормальных неголономных координатах, полный интеграл был найден и с его помощью выявлен один первый интеграл уравнений движения — неизменность проекции угловой скорости шара на вертикаль. Этого было достаточно для решения всей задачи в силу наличия двух дифференциальных уравнений связей, интеграла энергии и вытекавшей из элементарных соображений общей механики прямолинейности движения центра тяжести шара. Наши работы по данному вопросу получили в дальнейшем отклик. В конце сороковых годов итальянский механик Пиньедоли опубликовал статью по данному вопросу с той же методикой. В настоящее время данной проблемой занимались в своих кандидатских диссертациях молодые научные работники (Назнев X. А., Титкова С. И.).  [c.8]

Следовательно, если нам удастся найти каноническое преобразование, приводящее функцию Гамильтона к такому виду, что канонические уравнения удастся проинтегрировать, то тем самым мы сумеем проинтегрировать и исходные канонические уравнения. Оказывается, задача построения такого канонического преобразования сводится к отысканию достаточно больнгого числа решений уравнения Гамильтона — Якоби в частных производных. Этому уравнению должна удовлетворять производящая функция искомого канонического преобразования.  [c.226]

Математическим вариантом этих физических представлений являются асимптотические формулы для решений соответствующих дифференциальных уравнений, формулы, которые дают тем яучшее приближение, чем выше частота колебаний (т. е. чем короче волны). Эти асимптотические формулы записываются в терминах лучей (т. е. движений в некоторой гамильтоновой динамической системе) или фронтов (т. е. решений уравнения Гамильтона — Якоби).  [c.407]

Для доказательства обратной теоремы построим поле fi оо экстремалей, ортогональных данной поверхности Т х, у, г) = 6 и сравним его с другим полем /, оо экстремалей. Последнее поле строится следующим образом. Решаем уравнение Гамильтона— Якоби (21) с граничным условием, состоящи.м в том, что S (х, у, г) должна быть постоянной величиной на поверхности Т (х, у, г) = 0. Если и и у определены соотношениями (22), то решение выражается интегралом (11). Тогда в соответствии с только что доказанной теорелюй уравнения (23) определяют поле экстремалей ортогональных поверхности Г = 0. Однако поля fl и 2 должны совпадать, поскольку они удовлетворяют одним и тем же дифференциальным уравнениям и одним и тем же граничным условиям па поверхности Т — 0. (Зледовата1ьно, для даппого поля Д величина интеграла S не зависит от пути интегрирования.  [c.667]

В формальном отношении очень гибким при отыскании решения оказывается уравнение Гамильтона —Якоби. Наиболее плодотворно оно используется Пуанкаре в его исследованиях на эту тему во втором томе его Methodes nouvelles . Большое преимущество уравнений в частных производных лежит в почти исчерпывающей возможности, которую они представляют для введения избыточных постоянных интегрирования. Используя это свойство и исходя из метода Пуанкаре, мы показали [88], как. можно различными способами прийти к тригонометрическим выражениям для элементов. Проведем здесь эти исследования более обстоятельно. При этом мы ограничимся астероидной задачей трех тел, ибо в этом случае рассуждения будут более короткими. С другой стороны, это связано с тем обстоятельством, что сейчас не существует каких-либо практических методов, чтобы выразить численно координаты в тригонометрической форме в общей задаче трех тел. Теоретическую возможность такого представления мы показали в предыдущем параграфе.  [c.603]

Итог этого для задачи, отображённой с.хемой рнс. 3.2. Систему в постановке задачи рнс. 3.2 и частицы в ней определяет действие-энтро-пия-информация предыдущего уровня иерархии. На предыдущем уровне иерархии свой адиабатический инвариант, свои сугубо конкретные уравнения состояния, свои дискрет>1ые размеры ячеек в фазовом пространстве, свой вид уравнения Гамильтона-Якоби. Если получать из них уравнения Гамильтона, то они отвечают, в частности, тем полям, которые характерны для этого, предыдущего уровня иерархии, и, самое главное, содержат специфику уравнений состояния полей на этом предыдущем уровне иерархии.  [c.143]


Хотя интегрнрованпе уравнения Остроградского — Якоби (139.1) в общем случае не упрон 1ает решения задачи, тем не менее, как указывалось выше, во многих случаях проще найти полный интеграл уравнения (139.1), а затем и интегралы канонической системы уравнений Гамильтона (132.5).  [c.384]

Вопросы о приоритете часто бывают спорными. С одной стороны, многие результаты были получены почти одновременно двумя различными авторами независимо друг от друга. С другой стороны, даже в том случае, когда первое явное упоминание о результате содержится в какой-либо ссылке, появившийся ранее результат иногда бывает настолько близок к нему, что вопрос о приоритете можно с основанием оспаривать. Такого рода трудности возникают в особенности в связи с работами середины девятнадцатого столетия, когда создавалось основное здание аналитической механики. Замечательным примером тесно связанных теорий, выдвинутых почти в одно и то же время двумя разными авторами независимо друг от друга, служит центральная теорема, которую автор (как и большинство английских математиков) называет теоремой Гамильтона — Якоби такое название дано в память о двух знаменитых авторах, одновременно работавших над одним и тем же кругом идей. Другим примером фундаментальной теории, разработанной двумя различными учеными независимо друг от друга (хотя на этот раз и не одновременно), служат уравнения Гиббса — Аппеля. Когда Уиллард Гиббс открыл эти уравнения, они не произвели глубокого впечатления, важность их была оценена лишь после того, как двадцать лет спустя Аппель открыл их вновь. Можно привести еще много других примеров, когда разные ученые независимо друг от друга приходили к одному и тому же результату.  [c.13]

Другие доказательства теоремы Якоби. В 25.1 мы привели дока.зательство теоремы Якоби об инвариантности формы уравнений движения по отношению к контактным преобразованиям. Это доказательство основывалось на теореме эквивалентности и, возможно, является простейшим. Тем не менее ввиду важности теоремы Якоби мы приведем еще два доказательства ее, каждое из которых представляет самостоятельный интерес. Одно из них связано с рассмотрением производящих функций контактных преобразований ( 24.2 и 24.3) и включает в себя некоторые приемы, которые окажутся по-пезными впоследствии. Другое доказательство основано на использовании симплектического свойства матрицы М ( 24.13) оно показывает, между прочим, что контактное преобразование не является самым общим преобразованием, при котором уравнения Гамильтона сохраняют свою форму.  [c.513]

Предположим, что мы произвели некоторое каноническое преобразование гамильтоновых уравнений некоторой данной задачи. Уравнения сохранили свою форму, но гамильтонова функция Н(д, р) превратилась в функцию Н д, р) новых переменных д ир. Если мы умеем интегрировать новые гамильтоновы уравнения, то решение исходных уравнений будет немедленно найдено и задача тем самым решена. В общем случае новые уравнения могут не иметь никаких преимуществ перед исходными в отношении интегрируемости. Но Якоби показал, что если можно построить такое каноническое преобразование, которое преобразует гамильтонову функцию Н(д, р) в Н(р), которая содержит только переменные р, то полученные уравнения Гамильтона могут быть немедленно проинтегрированы и, следовательно, динамическая задача решена. Таким образом, метод Якоби состоит в замене прямого интегрирования уравнений Гамильтона отысканием соответствующего канонического преобразования. Этот метод Якоби для интегрирования уравнений Гамильтона является примером преобразования одной математической проблемы в другую. Вместо попыток прямо интегрировать уравнения Гамильтона, мы ищем решение совершенно другого рода уравнения. Подобная же картина имеет место для случая связи между конформными преобразованиями и задачей Дирихле.  [c.832]

Завершающий 6.5 главы посвящен управляемому движению гиперона и аналитическому интегрированию гиперреактивных уравнений в центральном гравитационном поле. Показывается, что управляемое ускорение силы тяги может быть выбрано оптимальным по энергетическим затратам, причем гамильтонов функционал качества на оптимальной траектории принимает постоянное значение, обеспечивая тем самым консервативность системы и выполнение закона сохранения энергии. Решение задачи в этом случае доводится до общего интегрирования в квадратурах по методу Гамильтона-Якоби.  [c.175]

Проблема точного интегрирования уравнений динамики — одна из самых популярных тем исследования, начиная со знаменитых Математических начал натуральной философии Ньютона. Руководящей идеей в этом круге вопросов является общая идея симметрии. При решении задачи о центральном движении Ньютон уже использовал соображения симметрии факторизуя орбиты группы вращений, он свел эту задачу к изучению движения по прямой в потенциальном поле. Впоследствии Лагранж и Якоби заметили, что классические интегралы задачи многих гравитирующих тел связаны с инвариантностью уравнений движения относительно группы преобразований Галилея. Это фундаментальное наблюдение обобщено Эмми Нётер каждой группе преобразований, сохраняющих действие по Гамильтону, отвечает интеграл уравнений движения. Верно и обратное фазовый поток уравнений Гамильтона, в которых гамильтонианом служит известный интеграл, переводит решения исходных уравнений движения в решения тех же уравнений. На этой идее основано доказательство известной теоремы Лиувилля о полной интегрируемости уравнений Гамильтона фазовые потоки инволютивных интегралов попарно коммутируют и порождают абелеву группу симметрий максимально возможной размерности на многообразиях их совместных уровней.  [c.6]

Н. Н. Бухгольца, И. М. Воронкова, А. П. Минакова и др. Поэтому в данном сборнике задачи по традиционным разделам механики представлены сравнительно слабо и основное внимание уделяется тем ее разделам, которые еще не нашли достаточно полного отражения в учебной литературе, в частности электромеханическим аналогиям, вариационным принципам, интегральным инвариантам, уравнениям Гамильтона, каноническим преобразованиям, методу Якоби и т. д.  [c.6]

Тем не менее для того, чтобы обнаружить существенное различие между этими двумя функциями, не нужно даже прибегать к помощи второго уравнения в частных производных. В теории Якоби энергетическая постоянная Е была одной из новых переменных Qn- Кроме энергетической постоянной Е, в рещении содержалось лишь п — 1 констант интегрирования. В теории Гамильтона все переменные находятся в равном положении и энергетическая постоянная играет роль заданной константы, а не переменной. Гамильтоново решение уравнения в частных производных является не полным, а -сверхполнымъ, так как оно содержит на одну константу больше, чем полное решение. Однородность по всем переменным является характерным свойством, отличающим гамильтонову U -функцию от S-функции Якоби. Эта однородность приводит к тому, что преобразование, определяемое функцией W, в корне отличается от S-преобразования.  [c.293]

Можно сделать попытку обозреть основные этапы развития аналитической динамики до середины XIX в. Первым шагом явилось установление лагранжевой формы уравнений движения, затем лагранжева теория вариации произвольных постоянных, а также теория Пуассона. Следующим этапом явились во-первых, представление Гамильтоном интегральных уравнений посредством единственной характеристической функции, определяемой а posteriori посредством интегральных уравнений, предполагаемых известными, или посредством условия, что она одновременно удовлетворяет двум дифференциальным уравнениям в частных производных, и, во-вторых, установление канонических уравнений движения. Вслед за тем Якоби свел интегрирование дифференциальных уравнений к проблеме нахождения полного интеграла единственного уравнения в частных производных и дал общую теорию связи интегрирования систем обыкновенных дифференциальных уравнений и уравнения в частных производных первого порядка. Наконец, была разработана теория систем канонических интегралов.  [c.910]


Смотреть страницы где упоминается термин Тема 18. Уравнение Гамильтона—Якоби : [c.84]    [c.90]    [c.32]    [c.138]    [c.149]    [c.45]    [c.832]    [c.315]    [c.571]   
Смотреть главы в:

Лекции по классической динамике  -> Тема 18. Уравнение Гамильтона—Якоби



ПОИСК



Гам??л?.то??а Якоби уравнение уравнению

Гамильтон

Гамильтона уравнения

Гамильтона — Якоби

Гамильтона — Якоби уравнени

Гамильтона —Якоби уравнение

Гамильтона-Якоби уравнение уравнения Гамильтона-Якоби

Зэк гамильтоново

Уравнение Гамильтона-Якоб

Уравнения Якоби

Якоби

Якоби Якоби



© 2025 Mash-xxl.info Реклама на сайте