Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Интегрирование уравнения Гамильтона — Якоби

И. Интегрирование уравнений Гамильтона — Якоби посредством разделения переменных  [c.338]

Подобно задаче для двух неподвижных центров, решение можно найти путем интегрирования уравнения Гамильтона Якоби в некоторой системе криволинейных координат. Однако рассматриваемая задача допускает непосредственное решение, т. е. система первых интегралов (5) (7) может быть проинтегрирована, если подходящим образом осуществить преобразование этих интегралов. Лля этого надо ввести новые переменные  [c.527]


Интегрирование уравнения Гамильтона—Якоби. Рассмотрим сначала некоторые свойства полного интеграла уравнения в частных производных Гамильтона — Якоби  [c.482]

Задача интегрирования системы Гамильтона по трудности эквивалентна задаче интегрирования уравнения Гамильтона-Якоби. Поэтому хотя установленная в предыдущем параграфе связь между этими объектами и являются полезной, но она не продвигает ни на шаг в деле построения решений.  [c.301]

Замечание 4. Интегрирование уравнений Гамильтона путем определения полного интеграла уравнения Гамильтона-Якоби часто называют методом Якоби.  [c.341]

Кроме того, интегрирование уравнения Гамильтона — Якоби (5.2.56) сводится к нахождению одного первого интеграла обыкновенного дифференциального уравнения второго порядка [34]  [c.547]

ИНТЕГРИРОВАНИЕ УРАВНЕНИЯ ГАМИЛЬТОНА - ЯКОБИ 75  [c.75]

Интегрирование уравнения Гамильтона — Якоби для задачи двух тел  [c.138]

Вихревой метод интегрирования уравнений Гамильтона включает в себя проблему отыскания в явном виде полного интеграла уравнений Ламба. Как нам известно, поиск потенциальных решений сводится к интегрированию одного уравнения Гамильтона—Якоби. Для  [c.203]

Канонические преобразования могут быть использованы для того, чтобы упростить систему уравнений Гамильтона, сделать ее более удобной для интегрирования. Далее канонические преобразования будут использованы для того, чтобы получить из уравнений Гамильтона иную форму уравнений движения — уравнение в частных производных Гамильтона — Якоби.  [c.312]

Установленная связь между траекториями механической системы и уравнением в частных производных позволяет не только находить траекторию по решению уравнения Гамильтона-Якоби, но и, наоборот, свести интегрирование уравнения в частных производных указанного типа к интегрированию системы обыкновенных дифферен-циа,тьных уравнений Гамильтона.  [c.648]

В заключение параграфа отметим, что все рассматривавшиеся ранее возможности интегрирования уравнений движения, основанные на использовании циклических координат, охватываются методом разделения переменных. К ним добавляются еще случаи, когда разделение переменных возможно, хотя координаты и не оказываются циклическими. Тем самым метод Гамильтона-Якоби представляет собой наиболее эффективный метод аналитического интегрирования уравнений движения.  [c.656]


Гамильтон показал, что если известен общий интеграл уравнений движения, представленных в канонической форме, то из него можно вывести полный интеграл этого уравнения с частными производными. Якоби дополнил эту теорему, доказав, что, обратно, если известен какой-нибудь полный интеграл этого уравнения с частными производными, то из него можно получить общий интеграл уравнений, движения. Как мы только что говорили, это уравнение с частными производными, которое мы будем называть уравнением Як оби. подобрано таким образом, что уравнения движения (6) являются для него дифференциальными уравнениями характеристик согласно известному методу интегрирования уравнений с частными производными первого порядка. Мы не будем, однако, пользоваться этим методом.  [c.473]

Преимущество канонических уравнений. — Канонические уравнения Гамильтона благодаря их особенной форме получили большое применение в механике. Это легко понять, если иметь в виду метод Якоби интегрирования уравнений с частными производными первого порядка. Действительно, канонические уравнения механики, которые могут быть написаны в следующей форме  [c.234]

Мы показали, что интегрирование системы канонических уравнений сводится к нахождению полного интеграла уравнения Гамильтона — Якоби. Это положение имеет не только теоретический интерес. Оказалось, что многие задачи динамики и в том числе задачи, представляющие интерес для теоретической физики, получают на этом пути свое удобное практическое решение.  [c.162]

ТЕОРЕМА ЯКОБИ ОБ ИНТЕГРИРОВАНИИ ДИФФЕРЕНЦИАЛЬНОГО УРАВНЕНИЯ ГАМИЛЬТОНА В ЧАСТНЫХ ПРОИЗВОДНЫХ  [c.306]

Резюме. При благоприятных обстоятельствах дифференциальное уравнение Гамильтона — Якоби непосредственно интегрируется в квадратурах. Это происходит в том случае, когда уравнение для энергии распадается на п уравнений, каждое из которых содержит лишь одну пару сопряженных переменных <7/г, pk. При этом функция S может быть записана в виде суммы п функций, каждая из которых зависит лишь от одной из переменных Константы интегрирования появляются в процессе разделения переменных.  [c.279]

Роль дифференциального уравнения в частных производных в теориях Гамильтона и Якоби. В предыдущей главе (гл. VII, п. 9) отмечалось, что впервые в аналитической механике фундаментальное уравнение в частных производных открыл Гамильтон. Он также первый выдвинул идею о фундаментальной функции, из которой можно было бы получить при помощи простых дифференцирований и исключения переменных все механические траектории. Однако первоначальная схема Гамильтона была практически неприменима. Более того, главная функция Гамильтона удовлетворяла двум уравнениям в частных производных. Второе уравнение с точки зрения теории интегрирования является ненужным усложнением. С другой стороны, в теории Якоби требуется найти лишь один полный интеграл основного дифференциального уравнения. В случае систем с разделяющимися переменными такой интеграл может быть найден. Поэтому при поверхностном подходе создается впечатление, что Якоби освободил теорию Гамильтона от ненужного усложнения, приведя ее к схеме, применимой на практике,  [c.291]

Это действительно так, если считать, что основная задача механики состоит лишь в интегрировании уравнений движения. Но такая ограниченная точка зрения была бы несправедливостью по отношению к далеко идущим исследованиям Гамильтона. Пользоваться непосредственно главной функцией Гамильтона действительно нельзя, и приходится прибегать к методу Якоби, но тем не менее главная функция Гамильтона остается важной и интересной функцией и служит гораздо более глубоким целям, чем простое интегрирование канонических уравнений. Поэтому сравнение tt -функции Гамильтона с S-функцией Якоби заслуживает того, чтобы на нем остановиться. Постигнув все тонкости теории Гамильтона, мы придем к заключению, что в теории Гамильтона два уравнения в частных производных столь же необходимы и естественны, как одно уравнение в теории Якоби.  [c.292]


Уравнение Гамильтона-Якоби. Теория канонических преобразований приводит нас к методу Якоби интегрирования канонической системы уравнений движения  [c.358]

Случай одной степени свободы. Продолжим начатое в п. п. 177-179 изучение некоторых вопросов, связанных с интегрированием консервативных и обобщенно консервативных систем. Будем изучать системы, движения которых обладают описанным ниже свойством периодичности. Для таких систем Делонэ предложил специальный выбор постоянных импульсов а (г = 1, 2,..., п) в характеристической функции Гамильтона п. 178. Эти новые импульсы представляют собой п независимых функций от набора величин появляющихся при нахождении полного интеграла уравнения Гамильтона-Якоби. Они называются действиями (точные определения см. далее) и ниже чаще всего будут обозначаться /. Канонически сопряженные к ним координаты wi называются угловыми переменными. Переменные действие-угол wi весьма удобны для описания движений, обладающих свойством периодичности. Они находят широкое применение в теории возмущений.  [c.371]

Заметим, что в XX в. получила дальнейшее развитие теория интегрирования уравнения Гамильтона — Остроградского — Якоби методом разделения переменных. Т. Леви-Чивита установил критерий возможной классификации соответствующих динамических задач с любым числом степеней свободы. Найденные им общие условия, которым должна удовлетворять функция Гамильтона для того, чтобы уравнение Гамильтона — Остроградского — Якоби интегрировалось в квадратурах методом разделения переменных, легли в основу позднейших исследований. Ф. Далль-Аква составил классификацию указанного характера для систем с тремя степенями свободы.  [c.103]

Заметим, наконец, что для того, чтобы иметь явные формулы рассмотренного выше канонического преобразования, нет необходимости начинать с уравнений (131), (135), которые предполагают интегрирование уравнения Гамильтона — Якоби удобнее обратиться к интегралам кеплерова движения, которые получаются элементарным путем, и ввести в них, вместо первоначальных эллиптических элементов, аргументы (139).  [c.355]

Предположим, что мы произвели некоторое каноническое преобразование гамильтоновых уравнений некоторой данной задачи. Уравнения сохранили свою форму, но гамильтонова функция Н(д, р) превратилась в функцию Н д, р) новых переменных д ир. Если мы умеем интегрировать новые гамильтоновы уравнения, то решение исходных уравнений будет немедленно найдено и задача тем самым решена. В общем случае новые уравнения могут не иметь никаких преимуществ перед исходными в отношении интегрируемости. Но Якоби показал, что если можно построить такое каноническое преобразование, которое преобразует гамильтонову функцию Н(д, р) в Н(р), которая содержит только переменные р, то полученные уравнения Гамильтона могут быть немедленно проинтегрированы и, следовательно, динамическая задача решена. Таким образом, метод Якоби состоит в замене прямого интегрирования уравнений Гамильтона отысканием соответствующего канонического преобразования. Этот метод Якоби для интегрирования уравнений Гамильтона является примером преобразования одной математической проблемы в другую. Вместо попыток прямо интегрировать уравнения Гамильтона, мы ищем решение совершенно другого рода уравнения. Подобная же картина имеет место для случая связи между конформными преобразованиями и задачей Дирихле.  [c.832]

Практическое применение развиваемой теории в механике идет точно в обратном направлении. Для того чтобы избежать интегрирования системы уравнений Гамильтона, пытаются найти какой-либо полный интеграл уравнения Г амильтона-Якоби. Хотя, по суш,еству, эти задачи эквивалентны, практика показывает, что определение полного интеграла, если это возможно, реализуется прош,е. При этом и объем вычислений на таком принципиальном шаге оказывается обычно меньше, чем при прямом интегрировании уравнений Гамильтона. Поскольку читатель понимает, что чудес не бывает, то следует указать, куда переходят аналитические сложности. Часто трудно перейти от неявного вида решения (29), полученного с помогцью произво-дягцей функции, к явному виду р = р (а, р, /), q = Ч( , Р, О- Однако здесь уже не приходится иметь дело с дифференциальными уравнениями.  [c.340]

Очевидно, что возможность интегрирования уравнения Гамильтона—Якоби целиком определяется аналитической структурой коэффициентов ац яиЯ2.....Яь), Ьг(Яи Я2,. .., Як) и силовой функции и. Это побудило Т. Леви-Чивита [111] вывести необходимые и достаточные условия, которым должны удовлетворять коэффициенты уравнения (10.2.13), чтобы оно было интегрируемым методом разделения переменных. Для случая трех степеней свободы (например, для пространственной ограниченной задачи трех тел) эти условия выписаны и исследованы Ф. Даль-Аква [112]. В 1911 г. П. Бургатти [113] выписал функциональные зависимости импульсов от координат, приводящие к интегрированию уравнения Гамильтона — Якоби. Н. Д. Моисеев [114] и В. Г. Демин [87] указали на два обобщения уравнений Лиувилля и Штеккеля, также интегрируемые методом разделения переменных.  [c.816]

Доказательство этой теоремы Якоби вытекает из предложения 9 гл. 1 и формул (15). Метод интегрирования уравнений Гамильтона с помощью теоремы 12 был предложен Якоби в 1837 г. Якоби опирался на более ранние работы Гамильтона (W. R. Hamilton). Метод Гамильтона —Якоби восходит к исследованиям Пфаффа (J. F. Pfaff) и Коши (А. L. au hy) по теории характеристик уравнений в частных производных.  [c.139]

Теперь связь между канонической системой и уравнением Гамильтона-Якоби установлена полностью. Интегрирование канонической системы сводится к интегрированию уравнения Гамипьтона-Якоби, и, обратно, интегрирование уравнения Гамильтона-Якоби зависит от решения канони-  [c.404]


Интегрирование уравнения Гамильтона-Якоби. Так как характеристическая функция системы (111) не содержит явно времени, то уравнение Гамильтона-Якоби для задачи о диух телах может быть написано в виде  [c.419]

Так 1м образом, мы показали, что если известеи полный интеграл уравнения Гамильтона — Якоби, то нет необходимости интегрировать систему обыкновенных дифференциальных уравнений (6.1), т. е. задача интегрирования системы (6.1) заменяется задачей нахождения полного интеграла у1)авнения (6.12).  [c.156]

Ита <, показано, что интегрирование канонических уравнений Гамильтоиа можно заменить нахождением полного интеграла уравнения Гам льто а — Якоби. В общем случае обе эти задачи обладают одинаковой трудностью, одна (о ме Отся динамическ1 е задачи, для которых 1 ахожден е П0. 0Г0 интеграла уравнения Гамильтона— Якоби оказывается более простым, чем интегрирование канонических уравнений Гамильтона.  [c.158]

Выдающиеся результаты в области общих принципов механики получили М. В. Остроградский, В. Гамильтон, К. Гаусс и Г. Герц. Теория интегрирования уравнений динамики была разработана В. Гамильтоном, М. В. Остроградским и К. Якоби, добившихся независимо друг от друга фундаментальных результатов в этой части механики. В общей теории движения систем материальных точек глубокие исследования провел С. А. Чаплыгин. С. А. Чаплыгину принадлежит особая система дифференциальных уравнений движения систем с неголономными связями. Теория движения систем с неголопомнымн связями является одним из сравнительно новых разделов теоретической механики. Эта теория непосредственно связана с современными исследованиями свойств так называемых неголопомиых пространств, обобщающих в известном смысле пространства Лобачевского и Ри.мапа.  [c.38]

Очерком общих методов интегрирования уравнений динамики заканчивается вторая часть этой книги, содержащая, вместе с ГЛ. I первой части, краткое рассмотрение основ аналитической механики. Оставлен в стороне ряд вопросов, как, например, распространение метода Остроградского — Гамильтона — Якоби на системы с избыточными координатами ) на случай неголоном-ных систем ), колебания с малыми и конечными амплитудами систем при наличии неголономиых связей и т. д.  [c.396]

Введение. Мы привели дифференциальные уравнения движения к особенно удобному каноническому виду. Однако наша конечная цель будет достигнута только тогда, когда мы сможем решить эти уравнения. Поскольку нам неизвестен метод непосрественного интегрирования этих уравнений, то приходится идти косвенными путями. Одним из таких путей является метод преобразований координат. Мы пытаемся отыскать такую систему координат в фазовом пространстве, в которой входящая в канонические уравнения функция Гамильтона имела бы настолько простой вид, чтобы уравнения движения могли быть непосредственно проинтегрированы. Естественно, что с этой точки зрения желательно исследовать всю группу преобразований координат, связанных с каноническими уравнениями. Изучение этих канонических преобразований оказывает ценную помощь при интегрировании уравнений механики. Теория канонических преобразований в основном связана с именем Якоби. Хотя он, возможно, и не обладал воображением, присущим Гамильтону, и его усилия были в основном направлены на решение задачи интегрирования уравнений, однако открытие канонических преобразований явилось все же огромным достижением. Получившаяся в результате теория интегрирования сыграла важную рель в развитии современной атомной физики. В далеко идущих исследованиях Гамильтона проблема интегрирования являлась второстепенной задачей.  [c.225]

В литературе дифференциальное уравнение (7.9.22) часто называют дифференциальным уравнением в частных производных Гамильтона — Якоби . Это название совершенно справедливо. Несмотря на фундаментальную важность функции расстояния Гамильтона, его первоначальная схема была неприемлема для целей практического интегрирования. Замечательное открытие Гамильтона дало Якоби ключ к каноническим преобразованиям, что в свою очередь расширило рамки применимости метода самого Гамильтона. С помощью функции Якоби S, на которую наложено гораздо меньше условий, можно найти и гамильтонову lF-функцию. Но было бы практически невозможно найти U -фyнкцию непосредственно путем решения двух совместных уравнений в частных производных. Связь между этими двумя теориями будет обсуждаться более подробно в следующей главе.  [c.263]

Метод Делоне для разделения переменных в периодических системах. Метод разделения переменных, если он применим, приводит к получению полного интеграла уравнения Гамильтона — Якоби, необходимого в теории интегрирования Якоби. Полный интеграл уравнения в частных производных первого порядка может принимать множество различных форм. Предположим, что мы имеем какой-то полный интеграл  [c.279]


Смотреть страницы где упоминается термин Интегрирование уравнения Гамильтона — Якоби : [c.304]    [c.107]    [c.130]    [c.649]    [c.157]    [c.20]    [c.363]   
Смотреть главы в:

Курс теоретической механики Издание 2  -> Интегрирование уравнения Гамильтона — Якоби



ПОИСК



Гам??л?.то??а Якоби уравнение уравнению

Гамильтон

Гамильтона уравнения

Гамильтона — Якоби

Гамильтона — Якоби уравнени

Гамильтона —Якоби уравнение

Гамильтона-Якоби уравнение уравнения Гамильтона-Якоби

Зэк гамильтоново

Интегрирование

Интегрирование дифференциального уравнения Гамильтона — Якоби разделением переменных. Теорема Штеккеля

Интегрирование уравнений

Интегрирование уравнений Гамильтона — Якоби посредством разделения переменных

Интегрирование уравнения Гамильтона—Якоби для задачи двух тел

Метод Якоби — Гамильтона интегрирования канонических уравнений Гамильтона

Теорема Якоби об интегрировании дифференциального уравнения Гамильтона в частных производных

Уравнение Гамильтона-Якоб

Уравнения Гамильтона интегрирования

Уравнения Якоби

Якоби

Якоби Якоби



© 2025 Mash-xxl.info Реклама на сайте