Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Вывод уравнения Гамильтона — Якоби

Вывод уравнения Гамильтона — Якоби  [c.210]

Запоминание, необходимое для синтеза информации - действия, конкретно отображает существование уравнения в частных производных Гамильтона-Якоби и его решения. По существу вывода уравнения Гамильтона-Якоби запоминание с его помощью задано как следствие экстремального условия типа (1.4) в главе I.  [c.109]

Вывод уравнения Гамильтона — Якоби на основе  [c.297]

Чаплыгин С. А. 171 Чаплыгина случай частной интегрируемости уравнений движения 171 Частный интеграл уравнений Гамильтона — Якоби, вывод инвариантных соотношений 307  [c.551]


Дальнейшее исследование процесса движения по орбите во времени (вывод уравнения Кеплера) на основе метода Гамильтона Якоби предоставляем самому читателю.  [c.533]

Это уравнение было открыто Гамильтоном в 1824 году в геометрической оптике, а спустя десять лет оно было распространено им на механику систем с потенциальными силами. Уравнение (7.1) называется уравнением Гамильтона в частных производных или (еще чаще) уравнением Гамильтона—Якоби, поскольку Якоби упростил его вывод и открыл важные свойства этого уравнения.  [c.73]

Структурные аналогии ряда тем аналитической механики выступают ярче, если в основу выводов положить формулу первой вариации функционала. На этом пути структурно объединяются такие, казалось бы, разные вопросы, как вариационный принцип Гамильтона—Остроградского, принцип Эйлера—Лагранжа, законы сохранения мер движения в ньютоновской механике - сохранение количества движения, механической энергии и момента количества движения, закон сохранения обобщенного импульса и обобщенный закон сохранения энергии в аналитической механике, интегральные инварианты динамики, уравнения Гамильтона — Якоби и др.  [c.281]

Открытие Гамильтона, согласно которому интегрирование дифференциальных уравнений динамики стоит в связи с интегрированием некоторого уравнения в частных производных первого порядка, основывалось на выводе результатов геометрической оптики, известных в корпускулярной теории, с точки зрения волновой теории, что имело большое значение в развитии физики своего времени. Теория Гамильтона интегрирования дифференциальных уравнений динамики есть прежде всего не что иное, как всеобщая аналитическая формулировка хорощо известного в физической форме соотнощения между световым лучом и световой волной. В силу изложенного здесь исходного положения делается понятной и та ненужно частная форма, в которой Гамильтон опубликовал свою теорию и из которой исходил Якоби. Гамильтон первоначально исходил в своих исследованиях систем лучей из практических запросов оптического приборостроения. В силу этого он рассматривал только такие световые волны, которые выходят из отдельных точек. Обобщение Якоби, вытекавшее отсюда, состояло в том, что для определения луча должны точно так же применяться и другие произвольные световые волны. Как известно, в оптике посредством так называемого принципа Гюйгенса из специальных волн строят общие  [c.513]


Опираясь на механику Гамильтона—Якоби и на результаты развития геометрической оптики в трудах Бельтрами, Липшица, Брунса, Ф. Клейна, Дебая, Зоммерфельда и Рунге, которые с помощью уравнения эйконала придали геометрической оптике обобщенный вид и нашли для ее соотношений векторное выражение, Шредингер исходил из гамильтоновой аналогии. Он применил неевклидово мероопределение ( 8 = 2Т(д , и все последующие рассуждения вел в пространстве конфигураций. Воспользовавшись построением ортогональных некоторому лучу поверхностей дей- ствия и уравнением Гамильтона—Якоби и показав, что эти поверхности распространяются в пространстве в виде волнового фронта, Шредингер пришел к выводу, что принцип Гамильтона выражает собой принцип Гюйгенса в его до-френелевой формулировке. Отсюда, воспользовавшись соотношением Я = Шредингер получает свое основное волновое уравнение,  [c.861]

Нетрадиционно освещается ряд тем кинематика, общие теоремы динамики, вывод уравнений Лагранжа, уравнение Гамильтона — Якоби. Часть материала выходит за рамки университетского курса элементы теории линейных и квадратичных по скоростям интегралов, применение вариационных принципов, новое доказательство теоремы Дарбу о канонических координатах. В книгу включены задачи, иллюстрирующие и дополняющие теоретический материал, даны методические указания к ним.  [c.2]

Уравнение Гамильтона-Якоби традиционно выводится с привлечением свободных канонических преобразований — условие каноничности (27.15) в независимых переменных д, д (см. определение 28.2). Исходная функция Гамильтона Н(1,д,р) и функция Н 1,ц,р), онре-деляюш,ая уравнения Гамильтона, в которые переходят в результате преобразования исходные уравнения, связаны соотношением (28.12). С привлечением уравнений (28.13) соотношение (28.12) можно записать так, что связь между гамильтонианами Н ш Н задается только производяш,ей функцией 3 1,ц,д) и валентностью сф О  [c.173]

Аналитическую теорию движения спутника с учетом величин второго порядка малости можно найти, например, в работах М. Д. Кислика [5] и А. Страбла [17]. В обшем подходе к описанию возмущенного движения спутника А. Страбл следует, по существу, идее Ганзена разложения движения, хотя вывод уравнений движения им получен новым пзггем и в иной форме. Он при интегрировании уравнений применяет методы теории нелинейных колебаний, в частности метод асимптотической теории Н. М. Крылова— Н. Н. Боголюбова — Ю. Д. Митропольского [1, 7 им получен ряд интересных результатов. А. Страбл в своей работе не придерживается общепринятых в небесной механике классических определений, что, как нам кажется, не является вполне оправданным. Совершенно иначе подошел к задаче М. Д. Кислик. Положение спутника относительно основной системы он определяет эллиптическими координатами, а уравнения движения записывает в канонической форме интегрирование уравнений он проводит классическим методом Гамильтона — Якоби. Известно, что в большинстве случаев в задачах небесной механики уравнение Гамильтона — Якоби не интегрируется в квадратурах М. Д. Кислик, оставаясь в пределах точности до второго порядка малости включительно, преобразовал выражение земного потенциала и разрешил уравнение Гамильтона Якоби в квадратурах.  [c.10]

Первые 6 лекций Якоби посвящает изложению основных принципов механики принципу сохранения движения центра тяжести системы, принципу живой силы, принципу площадей и принципу наименьшего действия. С 10-ой лекции Якоби развивает теорию множителя" систем обыкновенных дифференциальных уравнений, являющуюся обобщением теории эйлеров-ского интегрирующего множителя. Якоби показывает каким образом можно в целом ряде случаев построить с помощью последнего множителя" всю систему п независимых интегралов. Изложив подробно теорию этого множителя, Якоби затем применяет ее к решению ряда механических задач. С 19-ой лекции Якоби, исходя из вариационного принципа Гамильтона, излагает тот метод интегрирования уравнения с частными производными первого порядка, который известен под названием метода Якоби-Гамильтона". В следующих лекциях этот метод примендется к ряду задач, взятых главным образом из области небесной механики. В 26 лекции Якоби излагает теорию эллиптических координат и показывает их приложение к разысканию геодезических линий эллипсоида, к задаче построения карт, к выводу основной теоремы Абеля и проч. Наконец, последние лекции Якоби посвящены изложению его классических методов интегрирования нелинейных уравнений в частных производных первого порядка.  [c.4]



Смотреть страницы где упоминается термин Вывод уравнения Гамильтона — Якоби : [c.84]    [c.91]    [c.271]    [c.5]    [c.676]    [c.163]    [c.183]    [c.80]    [c.132]    [c.149]    [c.548]    [c.884]    [c.713]    [c.31]    [c.5]    [c.504]   
Смотреть главы в:

Небесная механика  -> Вывод уравнения Гамильтона — Якоби



ПОИСК



Вывод

Вывод уравнений

Вывод уравнения Гамильтона—Якоби на основе формулы полной вариации действия

Вывод-вывод

Гам??л?.то??а Якоби уравнение уравнению

Гамильтон

Гамильтона уравнения

Гамильтона — Якоби

Гамильтона — Якоби уравнени

Гамильтона —Якоби уравнение

Гамильтона-Якоби уравнение уравнения Гамильтона-Якоби

Зэк гамильтоново

Уравнение Гамильтона-Якоб

Уравнения Якоби

Частный интеграл уравнений Гамильтона — Якоби, вывод инвариантных

Частный интеграл уравнений Гамильтона — Якоби, вывод инвариантных соотношений

Якоби

Якоби Якоби



© 2025 Mash-xxl.info Реклама на сайте