Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Лагранжа Гамильтона — Якоби

Гамильтон, по существу, дал улучшенную математическую формулировку принципа, который был установлен еще в фундаментальных исследованиях Эйлера и Лагранжа предложенная им операция интегрирования по времени также была известна уже Лагранжу. Поэтому название принцип Гамильтона , данное Якоби, не привилось среди ученых прошлого столетня. Оно вошло в употребление, однако, благодаря ряду учебников, появившихся и более позднее время.  [c.139]


На основе результатов, найденных Лагранжем, Гамильтоном, Якоби, Остроградским, Ли, возник ряд новых математических и механических проблем.  [c.833]

Лагранж в Аналитической механике рассматривает именно эту узкую форму принципа наименьшего действия. Однако указание на более широкую форму принципа содержится в его ранней работе где в 13 прямо указывается на то, что полученное Лагранжем в 8 этой статьи соотношение, тождественное с уравнением для изоэнергетической вариации, применимо в случае произвольных сил. Большинство ученых, разрабатывавших этот вопрос после Лагранжа, взяли у него как раз узкую форму принципа (в том числе Гамильтон и Якоби). Лишь Гельмгольц рассмотрел расширенную форму принципа. Однако Гельмгольц не счел нужным проводить отчетливое различие между принципом наименьшего действия в расширенной форме и принципом Гамильтона. Он основывался при этом на том безусловно верном положении, что оба эти принципа эквивалентны уравнению Даламбера и в силу этого являются следствиями друг друга. Тем не менее это не дает права отождествлять их, так как варьирование, применяемое в каждом из этих принципов, производится совершенно различными способами. Оба эти принципа получаются из соотношений при различных специализациях общего способа варьирования.  [c.221]

После оформления Герцем понятий голономных и неголономных связей и выявления их значения, аналитическая механика Лагранжа, Гамильтона, Якоби, Пуассона и других по-прежнему продолжала развиваться весьма интенсивно и в настоящее время представляет собой основной аппарат для теоретической физики, включая самые новейшие ее разделы, а также для небесной механики, не говоря уже о всех прикладных дисциплинах, вынужденных использовать методы аналитической ди- намики.  [c.3]

Развитие принципа наименьшего действия связано с именами П. Л. Мопертюи (1698— 1759), Эйлера, Лагранжа, К. Г. Якоби (1804 — 1851). Существенный вклад в развитие аналитической механики на основе сформулированного им принципа был сделан У. Р. Гамильтоном (1805— 1865). Независимо от Гамильтона этот принцип несколько позднее был разработан Остроградским, который применил его для более широкого класса задач. Этот наиболее важный и общий принцип получил название принципа Гамильтона — Остроградского.  [c.12]

Книга содержит систематическое изложение теоретической механики и основ механики сплошных сред. Большое внимание уделено фундаментальным понятиям и законам механики Ньютона — Галилея, законам изменения и сохранения импульса, кинетического момента и энергии, уравнениям Лагранжа, Гамильтона и Гамильтона — Якоби для класса обобщенно-потенциальных сил, а также законам механики сплошных сред, на единой основе которых рассматриваются идеальная и вязкая жидкости, упругое тело. В книге подробно излагаются-, задача двух тел и классическая теория рассеяния, законы изменения импульса, кинетического момента и энергии относительно неинерциальных систем отсчета, теория линейных колебаний систем под действием потенциальных, гироскопических и диссипативных сил, метод Крылова — Боголюбова для слабо нелинейных систем, методы усреднения уравнений движения. Книга содержит большое количество примеров интересных для физиков, в частности рассматриваются примеры на движения зарядов в заданных электромагнитных полях, задачи на рассеяние частиц, колебания молекул, нелинейные колебания, колебания систем с медленно меняющимися параметрами, примеры из магнитогидродинамики. Книга рассчитана на студентов и аспирантов физических специальностей.  [c.2]


Теорема 13 установлена Якоби в 1837 г. Следует заметить, что обратная теорема о том, что решение уравнения с частными производными типа Гамильтона приводится к решению системы обыкновенных дифференциальных уравнений (дифференциальных уравнений характеристик), имеющей в рассматриваемом случае форму Гамильтона, высказана Пфаффом и Коши в развитие еще более ранних исследований Лагранжа и Монжа, еще до того как Гамильтон и Якоби начали заниматься вопросами динамики (Э. Уиттекер [57]). Наиболее эффективный прямой метод решения уравнения Гамильтона— Якоби — это метод разделения переменных полный интеграл есть сумма слагаемых, каждое из которых зависит только от одной из переменных Ж1,. .., ж , I.  [c.77]

Покажем, что на релятивистскую механику переносится вся теория Лагранжа — Гамильтона — Якоби в трехмерном формализме.  [c.87]

Мы установим сначала, какую форму принимает для таких систем интегральный инвариант Пуанкаре — Картана после этого рассмотрим, как записать для них систему уравнений, вид которой напоминает уравнения Лагранжа или уравнения Гамильтона, но порядок ниже (за счет использования интеграла энергии) далее выясним, как выглядят в этом случае вариационный принцип Гамильтона и уравнение Гамильтона — Якоби и какие возможности открываются для определения полного интеграла этого уравнения.  [c.326]

Введенный так функционал W является аналогом действия по Гамильтону 1. Он получается из действия по Гамильтону, если функцию Лагранжа заменить на функцию Якоби, t на q и ограничить выбор пучка сравниваемых кривых изоэнергетическим  [c.330]

Дальнейшее развитие аналитическая механика получила в трудах Лагранжа (1736—1813), Лапласа (1749—1827), Якоби (1804— 1851), Гамильтона (1805—1865), Герца (1857—1894), Чаплыгина (1869—1942) и др., но их работы не могут быть здесь рассмотрены, так как они не входят в программу нашего курса.  [c.12]

Вместо главной функции Гамильтона введем характеристическую функцию Якоби. Характеристическая функция связана с главной функцией некоторым соотношением. Это соотношение совпадает с соотношением между механическим действием согласно Гамильтону и Остроградскому и механическим действием согласно Эйлеру и Лагранжу. Рассмотрим снова функцию  [c.372]

Принцип Гамильтона. Чтобы полнее выяснить свойства полного интеграла уравнения в частных производных Гамильтона — Якоби, следует рассмотреть функцию действия. Сначала выведем известный принцип Гамильтона из принципа Эйлера — Лагранжа (п. 8). Имеем  [c.315]

Книга представляет собой углубленный курс классической механики, написанный на современном уровне. Помимо краткого обзора элементарных принципов, в ней изложены вариационные принципы механики, задача двух тел, движение твердого тела, специальная теория относительности, уравнения Гамильтона, канонические преобразования, метод Гамильтона — Якоби, малые колебания и методы Лагранжа и Гамильтона для непрерывных систем и полей. Показывается связь между классическим развитием механики и его квантовым продолжением. Книга содержит большое число тщательно подобранных примеров и задач.  [c.2]

Действие этого постулата не ограничивается областью статики. Он приложим также и к динамике, где принцип виртуальных перемещений соответствующим образом обобщается принципом Даламбера. Так как все основные вариационные принципы механики — принципы Эйлера, Лагранжа, Якоби, Гамильтона — являются всего лишь другими математическими формулировками принципа Даламбера, постулат А есть в сущности единственный постулат аналитической механики и поэтому играет фундаментальную роль Принцип виртуальных перемещений приобретает особое значение в важном частном случае, когда приложенная сила Fi моногенная, т. е. когда она получается из одной скалярной функции — силовой. В этом случае виртуальная работа равна вариации силовой функции LJ qi,. .., ( ). Так как силовая функция равна потенциальной энергии, взятой с обратным знаком, то можно сказать, что состояние равновесия механической системы характеризуется стационарностью потенциальной энергии, т. е. условием  [c.100]


Несмотря на то, что имеется целый ряд вариационных принципов, связанных с именами Эйлера, Лагранжа, Якоби, Гамильтона, все эти принципы взаимосвязаны, и к ним ко всем подходит название принцип наименьшего действия , если понимать этот термин в широком смысле слова.  [c.136]

Введение. Принцип наименьшего действия и его обобщение, произведенное Гамильтоном, переводят задачу механики в область вариационного исчисления. Уравнения движения Лагранжа, вытекающие из стационарности некоторого определенного интеграла, являются основными дифференциальными уравнениями теоретической механики. И тем не менее мы еще не достигли конца пути. Функция Лагранжа квадратична по скоростям. Гамильтон обнаружил замечательное преобразование, делающее функцию Лагранжа линейной по скоростям при одновременном удвоении числа механических переменных. Это преобразование применимо не только к специальному виду функции Лагранжа, встречающемуся в механике. Преобразование Гамильтона сводит все лагранжевы задачи к особенно простой форме, названной Якоби канонической формой. Первоначальные п дифференциальных лагранжевых уравнений второго порядка заменяются при этом 2га дифференциальными уравнениями первого порядка, так называемыми каноническими уравнениями , которые замечательны своей простой и симметричной структурой. Открытие этих дифференциальных уравнений ознаменовало собой начало новой эры в развитии теоретической механики.  [c.190]

Эту же задачу можно решить методом Гамильтона. Для этого используем наш прежний результат, связанный с принципом Якоби (см. гл. 6, п. 10). Формально принцип эквивалентен принципу действия (9.7.4), следует лишь заменить Y2( — У) на m + V/с . Отсюда получаем функцию Лагранжа в каноническом виде  [c.365]

С этим согласуется положение, заключающееся в том, что, найдя полный интеграл уравнения Гамильтона—Якоби, соответствующий динамической задаче (консервативной), можно найти общее решение уравнений движения Лагранжа из равенств  [c.302]

Мы рассмотрели весьма частные случаи, когда специальная структура функции Гамильтона позволяет дать общий конструктивный способ построения общего интеграла уравнения Гамильтона-Якоби. Следует, однако, отметить, что указанные способы разделения переменных применимы к таким важным задачам механики, как задача о гармоническом осцилляторе, задача о движении физического маятника, задача двух тел, задача о движении тяжелого твердого тела вокруг неподвижной точки в случае Лагранжа и др.  [c.365]

Принцип Мопертюи-Лагранжа. При заданной константе энергии h уравнения движения консервативной или обобщенно консервативной системы могут быть записаны в форме уравнений Якоби (см. уравнения (36) п. 152). Эти уравнения имеют форму уравнений Лагранжа второго рода, где в качестве функции Лагранжа L выступает функция Якоби Р, а роль независимой переменной играет обобщенная координата qi. По аналогии с действием S по Гамильтону введем действие по Лагранжу  [c.483]

Механика точки как наука была основана Галилеем в начале семнадцатого столетия и после его смерти развивалась Гюйгенсом. Основные принципы были установлены и сформулированы Ньютоном, чье великое сочинение Математические начала натуральной философии [1] появилось в 1687 г. В 1743 г. Даламбер [2] распространил законы Ньютона на задачи механики твердого тела. Основания аналитической механики были заложены Эйлером уже в 1736 г. [3], но выдающимся событием в ранней истории этой науки стал выход в свет Аналитической механики Лагранжа в 1788 г. [4]. Развитие аналитической механики со времен Лагранжа связано с именами многих прославленных математиков. Среди тех, кому принадлежат наиболее фундаментальные открытия в этой области, в первую очередь следует назвать Лапласа, Гамильтона, Якоби, Гаусса и Пуанкаре.  [c.11]

Сделаем еще одно замечание, касающееся теоремы Гамильтона — Якоби. Мы видели ( 16.2), что если S (q а t) представляет собой полный интеграл уравнения в частных производных Гамильтона, то решение задачи Лагранжа мон<но получить из п уравнений  [c.492]

В книге дано систематическ(1е и достаточно доступное изложение O HOD аналитической механики В нее включены разделы уравнения Лагранжа, уравнения Гамильтона, теория Якоби, неголономные системы, вариационные принципы и теория возмущений. Приводятся многочисленные примеры, иллюстрирующие применение рассматриваемых методов.  [c.2]

Возникновение аналитической механики неголономных систем отно-сится к концу прошлого века, когда аналитическая механика голономных систем была уже построена, а неголономные системы были чем-то удивительным, почему-то не охватываемым, казалось бы, всеобъемлюпщм аналитическим формализмом Эйлера — Лагранжа — Гамильтона — Якоби, Инерция была настолько велика, а неожиданно возникающие препятствия столь непривычны, что не обошлось без ошибок и просмотров (К, Нейман,  [c.171]

Теорема Ламберта привлекла заметное внимание. Проиллюстрируем лишь наиболее известные имена. До Ламберта Эйлеру [1] удалось получить частный случай параболических орбит, который, впрочем, можно найти и у Ньютона [5] в несколько ином виде. После того как в 1761 году появилось доказательство Ламберта [1], использующее геометрический синтез , Лагранж [5] первым опубликовал в 1766 году аналитическое доказательство, а в 1778 году — три других [6]. Лаплас [4], Гаусс [3], Гамильтон [4], Якоби [2], Келли [1], Сильвестер [1], Адамс  [c.42]


По-видимому, Мопертюи и Эйлер пришли к принципу каждый своим путем. В форме Мопертюи он применим для конечных изменений скорости, в форме Эйлера он охватывает непрерывные движения. Принимая во внимание необычность принципа, его универсальность и научный авторитет его создателей, легко предположить, что он быстро привлек внимание ученых. Начавшаяся в 1750 г. дискуссия , в которой активно участвовали Эйлер, Даламбер, Вольтер, Лагранж и другие, затянулась на несколько десятилетий. Для механики, для развития вариационных методов она оказалась чрезвычайно плодотворной. Она позволила выработать новый взгляд на физическую сущность законов природы, придала импульс развитию нового математического аппарата — вариационного исчисления и сформировала новый путь построения классической механики в работах Лагранжа, Гамильтона, Якоби, Гаусса. Эта траектория развития механики имела своим истоком законы и принципы Галилея, Декарта, Гюйгенса, Ньютона, Лейбница, Эйлера, Мопертюи, и ее математическая реализация была адекватна формированию в XVIII-XIX вв. новых разделов математики.  [c.238]

Важным этапом развития термодинамики необратимых процессов явились поиски вариационной формулировки феноменологической теории. Наибольшие успехи в этом направлении достигнуты на основе аналогий с вариационными принципами аналитической механики в лагранжевой и гамильтоновой формах. Исключительная общность последних и легкость распространения их на немеханические разделы физики сыграли вдохновляющую роль в создании вариационных принципов термодинамики необратимых процессов. Для линейной термодинамики первые вариационные принципы были сформулированы в работах Онзагера, Пригожина, Пиглера, Био, Дьярмати [1, 4, 8, 9, 11]. Как и в аналитической механике, где принципы Эйлера, Лагранжа, Гамильтона, Якоби являются частными формулировками принципа Даламбера, упомянутые принципы линейной термодинамики эквивалентны одному вариационному принципу Бахаревой, сформулированному на основе тщательного рассмотрения аналогий линейной тер-  [c.7]

Как инструмент для изучения произвольных голономных систем материальных точек получены уравнения Лагранжа второго рода и канонические уравнения Гамильтона [66]. Дается понятие о лагран-жевом формализме [1, 36]. Изучается поведение полной энергии системы в зависимости от структуры обобщенных сил и кинетической энергии. Дается метод циклических координат [5, 58]. Устанавливается, что для голономных систем интегргипы количества движения, кинетического момента и обобщенный интегргия энергии Якоби [70] всегда могут быть представлены как следствие существования соответствующих циклических координат. Указывается на возможность использования аппарата теории групп для поиска интегралов движения [5]. Изложение вариационных принципов Гамильтона и Мопертюи-Лагранжа-Якоби [17, 38, 70] выполнено в соответствии с современной теорией оптимальных процессов [2, 5, 13]. Геометрически наглядная трактовка придана теории малых колеба-  [c.12]

Основы динамики свободных систем были заложены И. Ньютоном. Динамика свободных и несвободных систем развилась в XVIII в. на основе исследований Л. Эйлера, Ж. Даламбера, Ж. Лагранжа. В XIX в. большое значение имели исследования. Отроградского, Гамильтона, Пуассона, Гаусса, Якоби, Ляпунова, Чаплыгина и других. С именами этих ученых мы будем встречаться на протяжении всего дальнейшего изложения курса механики. Член Петербургской Академии наук Л. Эйлер развил аналитические методы исследования, прежде всего, свободных систем.  [c.36]

Развитие теоретической механики в XVIII и XIX вв. шло главным образом по пути создания и разработки аналитических (Эйлер, Даламбер, Лагранж. Якоби, Гамильтон, А. Пуанкаре и др ) и геометрических (Пуансо и др.) методов механики.  [c.15]

Гамильтон (1805—1865). Совершенно новый мир, скрывавшийся за достижениями Лагранжа, открылся в исследованиях сэра Уильяма Роуанн Гамильтона. Уравнения Лагранжа были довольно сложными дифференциальными уравнениями второго порядка. Гамильтон сумел преобразовать их в систему дифференциальных уравнений первого порядка с удвоенным числом переменных позиционные координаты и импульсы рассматривались при этом как независимые переменные. Дифференциальные уравнения Гамильтона линейны и разрешены относительно производных. Это простейшая и наиболее удобная форма, к которой могут быть приведены уравнения вариационной задачи. Отсюда название канонические уравнения , данное им Якоби.  [c.391]

Стержень на вращающейся плоскости. В качестве следующего примера рассмотрим систему, исследовавшуюся нами в 8.11. Стержень движется по гладкой плоскости, которая равномерно вращается вокруг горизонтальной оси, фиксированной в этой плоскости. Эта задача проще решается с помощью уравнений Лагранжа, но интересно также решить ее методом Гамильтона — Якоби. Согласно (8.11.1) имеем  [c.298]

Система Лиувилля впервые рассматривалась в Journal de math., XIV, 1849, стр. 257. Интегрирование можно выполнить непосредственно с помощью уравнений Лагранжа, не прибегая к теореме Гамильтона — Якоби см., например, Уиттекер [27]. Другое элементарное доказательство см. далее в этой книге ( 26.9).  [c.329]


Смотреть страницы где упоминается термин Лагранжа Гамильтона — Якоби : [c.13]    [c.20]    [c.392]    [c.224]    [c.476]    [c.18]    [c.48]    [c.329]    [c.331]    [c.460]    [c.385]    [c.483]    [c.330]    [c.9]   
Основные принципы классической механики и классической теории поля (1976) -- [ c.0 ]



ПОИСК



Гамильтон

Гамильтона — Якоби

Зэк гамильтоново

Лагранжа Якоби

Якоби

Якоби Якоби



© 2025 Mash-xxl.info Реклама на сайте