Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Гамильтона—Якоби движения

Уравнение Гамильтона—Якоби движения точки Р имеет внд  [c.364]

Канонические преобразования могут быть использованы для того, чтобы упростить систему уравнений Гамильтона, сделать ее более удобной для интегрирования. Далее канонические преобразования будут использованы для того, чтобы получить из уравнений Гамильтона иную форму уравнений движения — уравнение в частных производных Гамильтона — Якоби.  [c.312]


Обратим теперь внимание на следующее обстоятельство. В координатном пространстве в каждый момент нас интересует положение лишь одной движущейся в нем точки—она определяется мгновенными значениями обобщенных координат рассматриваемой системы. Между тем полный интеграл уравнения Гамильтона — Якоби в каждый момент определяет функцию S, заданную во всем координатном пространстве и имеющую вполне определенное значение в каждой точке этого пространства. В связи с тем, что функция S зависит также и от времени, можно представить себе ее как некоторую поверхность, заданную в координатном пространстве и непрерывно деформирующуюся (или движущуюся). Каким же образом задание функции, определенной на всем пространстве и изменяющейся во времени, может определить движение той единственной точки, которая интересует нас Как связано движение этой точки с деформирующейся поверхностью  [c.324]

И что она зависит от п постоянных а,,. .., а . Как и в первом случае, легко проверить, что неравенство (155) выполнено. Поэтому функция (163) является полным интегралом уравнения Гамильтона— Якоби и, зная ее, можно выписать закон движения в конечной форме.  [c.336]

Переход от системы уравнений второго порядка к системе уравнений первого порядка можно осуществлять разными способами, и в результате будут получаться, вообще говоря, различные эквивалентные системы. Среди них особенно простую и симметричную структуру имеет система канонических уравнений Гамильтона. Свойства этих уравнений лежат в основе метода Гамильтона-Якоби исследования движений механических систем, а также современной теории возмущений. Канонические уравнения получаются с помощью преобразования Лежандра.  [c.626]

Знание функции 5 действия по Гамильтону дает возможность найти закон движения системы. Функция 8 удовлетворяет уравнению Гамильтона-Якоби. Тем самым имеется возможность с помощью методов теории уравнений в частных производных исследовать свойства движения динамических систем.  [c.644]

Вернемся к задаче определения закона движения механической системы с помощью полного интеграла уравнения Гамильтона-Якоби. Для симметрии обозначим  [c.649]

В заключение параграфа отметим, что все рассматривавшиеся ранее возможности интегрирования уравнений движения, основанные на использовании циклических координат, охватываются методом разделения переменных. К ним добавляются еще случаи, когда разделение переменных возможно, хотя координаты и не оказываются циклическими. Тем самым метод Гамильтона-Якоби представляет собой наиболее эффективный метод аналитического интегрирования уравнений движения.  [c.656]


Было показано, что при известном законе движения материальной системы можно построить функцию W. Теперь поставим обратную задачу, найдя функцию W без предварительного определения закона движения, найти закон движения материальной системы. Для этого докажем, что главная функция Гамильтона удовлетворяет уравнению (11.350) с частными производными первого порядка, т. е. уравнению Остроградского — Гамильтона — Якоби. Ради краткости это уравнение далее будем называть уравнением Остроградского.  [c.371]

Теперь мы можем сформулировать доказанную теорему. Теорема Якоби. Если S(t, qi, а.-) — некоторый полный интеграл уравнения Гамильтона — Якоби (6), то конечные уравнения движения голономной системы с данной функцией Н могут быть записаны в виде )  [c.156]

Заслуга Якоби заключается в том, что, продолжив исследования Гамильтона, он разорвал этот порочный круг. Он показал, что конечные уравнения движения могут быть написаны в виде (9) при помощи произвольного полного интеграла S t, qi, а,) уравнения Гамильтона — Якоби.  [c.159]

Книга представляет собой углубленный курс классической механики, написанный на современном уровне. Помимо краткого обзора элементарных принципов, в ней изложены вариационные принципы механики, задача двух тел, движение твердого тела, специальная теория относительности, уравнения Гамильтона, канонические преобразования, метод Гамильтона — Якоби, малые колебания и методы Лагранжа и Гамильтона для непрерывных систем и полей. Показывается связь между классическим развитием механики и его квантовым продолжением. Книга содержит большое число тщательно подобранных примеров и задач.  [c.2]

Уравнение Гамильтона—Якоби. Для того чтобы иметь уверенность в том, что новые переменные являются величинами постоянными, достаточно потребовать, чтобы преобразованный гамильтониан К был тождественно равен нулю, так кдк тогда новые уравнения движения будут иметь вид  [c.301]

Таким образом, главная функция Гамильтона осуществляет переход к постоянным координатам р и постоянным импульсам а. Решая уравнение Гамильтона — Якоби, мы в то же время получаем решение рассматриваемой механической задачи. Говоря на математическом языке, мы установили соответствие между 2п каноническими уравнениями движения, которые являются обыкновенными дифференциальными уравнениями первого порядка, и уравнением Гамильтона — Якоби, которое является уравнением первого порядка в частных производных. Такое соответствие имеет место не только для уравнений Гамильтона известно, что каждому уравнению первого порядка в частных производных соответствует определенная система обыкновенных дифференциальных уравнений первого порядка. В данном случае эта связь между рассматриваемым уравнением в частных производных и соответствующими каноническими уравнениями может быть объяснена происхождением этих уравнений от общего вариационного принципа — модифицированного принципа Гамильтона.  [c.304]

Переменные действие — угол. Во многих разделах физики важную роль играют системы, движение которых является периодическим. В таких системах нас часто интересуют не столько подробности траекторий их точек, сколько частоты этих движений. Мы сейчас рассмотрим весьма изящный и эффективный метод исследования таких систем, основанный на методе Гамильтона — Якоби. В этом методе в качестве новых импульсов выбираются не постоянные а,-, непосредственно входящие в полный интеграл уравнения Гамильтона — Якоби, а подходящим образом определенные постоянные образующие п независимых функций от 1. Они носят название действий.  [c.316]

Решите задачу о движении материальной точки в однородном гравитационном поле, пользуясь методом Гамильтона — Якоби. Найдите также уравнение ее траектории.  [c.343]


По сравнению с большей частью книг, на которые мы ссылались в предыдущей главе, книга Борна выделяется обилием материала по применению метода Гамильтона — Якоби и переменных действие — угол. Много-периодические движения и теория возмущенного движения изложены здесь, несомненно, полнее, чем в других книгах на эту тему, написанных на английском языке.  [c.345]

Метод Гамильтона — Якоби и переменные действие — угол изложены в этой книге значительно менее подробно, чем в книге Борна. (Вероятно, поэтому рассматриваемые вопросы часто оказываются более легкими для чтения.) Особо следует отметить изложение вопроса о связи вырождающихся движений с разделением переменных. В приложении к этой книге производится вычисление интегралов из задачи Кеплера с помощью теории вычетов (что, впрочем, делается и в книге Борна),  [c.345]

В этом параграфе мы покажем, как метод интегрирования Гамильтона-Якоби непосредственно и, так сказать, автоматически приводит к решению астрономической задачи о движении планет. С другой стороны, мы установим, что этот же метод удовлетворяет требованиям атомной физики и дает естественное введение в (старую) квантовую теорию.  [c.308]

Однако по причинам, связанным с наблюдениями, астронома интересует не столько форма орбиты, сколько процесс движения по орбите во времени. Метод Гамильтона-Якоби весьма наглядным образом разрешает и этот вопрос, именно, посредством уравнения (44.1)  [c.311]

Из уравнений (8.3.6) видно, что для систем с разделяющими переменными полный интеграл уравнения в частных производных Гамильтона — Якоби можно получить в квадратурах. Возникает такая необычная ситуация, что сопряженные переменные qk,Pk в каждой паре связаны непосредственно друг с другом без участия остальных переменных. Механическая система с п степенями свободы может рассматриваться как суперпозиция п систем с одной степенью свободы. Однако истинные уравнения движения такие  [c.278]

С этим согласуется положение, заключающееся в том, что, найдя полный интеграл уравнения Гамильтона—Якоби, соответствующий динамической задаче (консервативной), можно найти общее решение уравнений движения Лагранжа из равенств  [c.302]

Общий интеграл и ход движения. Определив для уравнения Гамильтона — Якоби Н=Е полный интеграл (120), мы получим согласно правилу п. 38 общее решение канонической системы, если, определив значения Wji по формулам (125), подставим полный интеграл в уравнения (74а) п. 88, определяющие траекторию, и в уравнение (74б), определяющее закон движения по этой траектории. Таким образом, принимая во внимание выражение (133 ) для величины и  [c.341]

Гамильтона—Якоби, что, как мы знаем, позволяет определить общее решение уравнений движения (предыдущая глава, п. 35), квадратура выполняется. Мы отложим доказательство этого положения до п. 26, где речь будет идти о лагранжевых системах общего вида.  [c.404]

Чаплыгин С. А. 171 Чаплыгина случай частной интегрируемости уравнений движения 171 Частный интеграл уравнений Гамильтона — Якоби, вывод инвариантных соотношений 307  [c.551]

В свете результатов, изложенных в предыдущем разделе, теперь можно несколько иначе описать метод Гамильтона — Якоби. Ранее этот метод рассматривался как средство для решения задач с помощью перехода к новым каноническим уравнениям, в которых все переменные являются интегралами движения. Такая интерпретация была дана Якоби. Другая точка зрения, которую впервые предложил Гамильтон, состоит в том, чтобы рассматривать 5 как функцию, которая преобразует начальные значения пространственных координат д[ при / = 0 в их значения для момента 1. Таким образом, она описывает изменение системы во времени.  [c.102]

Уравнение Гамильтона-Якоби. Теория канонических преобразований приводит нас к методу Якоби интегрирования канонической системы уравнений движения  [c.358]

Мы рассмотрели весьма частные случаи, когда специальная структура функции Гамильтона позволяет дать общий конструктивный способ построения общего интеграла уравнения Гамильтона-Якоби. Следует, однако, отметить, что указанные способы разделения переменных применимы к таким важным задачам механики, как задача о гармоническом осцилляторе, задача о движении физического маятника, задача двух тел, задача о движении тяжелого твердого тела вокруг неподвижной точки в случае Лагранжа и др.  [c.365]

Пример 2 (Движение стержня, опирающегося на горизонтальную плоскость и ВЕРТИКАЛЬНУЮ ось). Пусть в однородном поле тяжести движется бесконечно тонкий однородный стержень длиной 21 и массой т. Нижний конец стержня перемещается по гладкой горизонтальной плоскости, а верхний его конец на рассматриваемой стадии движения опирается на гладкую вертикальную ось 0Z (рис. 143). Найдем полный интеграл уравнения Гамильтона-Якоби в этой задаче.  [c.366]

Случай одной степени свободы. Продолжим начатое в п. п. 177-179 изучение некоторых вопросов, связанных с интегрированием консервативных и обобщенно консервативных систем. Будем изучать системы, движения которых обладают описанным ниже свойством периодичности. Для таких систем Делонэ предложил специальный выбор постоянных импульсов а (г = 1, 2,..., п) в характеристической функции Гамильтона п. 178. Эти новые импульсы представляют собой п независимых функций от набора величин появляющихся при нахождении полного интеграла уравнения Гамильтона-Якоби. Они называются действиями (точные определения см. далее) и ниже чаще всего будут обозначаться /. Канонически сопряженные к ним координаты wi называются угловыми переменными. Переменные действие-угол wi весьма удобны для описания движений, обладающих свойством периодичности. Они находят широкое применение в теории возмущений.  [c.371]


Существует беоконечное число полных интегралов уравнения Гамильтона—Якоби (132). Каждый из них порождает соответствующее преобразование, т. е. определяет движение, но все они описывают одно и то же движение и различаются лишь тем, как вводятся произвольные постоянные а.  [c.324]

Теорема Якоби обосновывает следующее правило построения закона движения qi(t), рДО по известному полному интегралу уравнения Гамильтона-Якоби S t,ql,..., q ,al,..., а ). Сначгипа разрешается система п уравнений  [c.646]

Как известно из механики, движение материальных частиц может быть определено с помощью уравнения Гамильтона-Якоби, являющегося, как и уравнение (67,3), уравнением в частных производных первого порядка. Аналогичной г 5 ве.1ичииой является гфи этом действие 5 частицы, а производные от действия определяют импульс р и функцию Гамильтона Н (энергию) частицы согласно формулам р = <35/(3г, Н =-—dS/dt, аналогично формулам (67,2). Известно, далее, что уравнение Гамильтона-Якоби эквивалентно уравнениям Гамильтона, имеющим вид р = —dHfdr, v = r = dH/dp. Вследствие указанной аналогии между механикой материальной частицы и геометрической акустикой мы можем непосредственно написать аналогичные уравнения для лучей  [c.366]

Резюме. Вместо того чтобы пытаться непосредственно интегрировать канонические уравнения, мы можем применить процесс преобразования. При этом для консервативной системы отыскивается каноническое преобразование, переводящее функцию Гамильтона Н в одну из новых переменных. Для реоном-ной системы ищется зависящее от времени каноническое преобразование, преобразующее Н в нуль. В обоих случаях найденное преобразование решает задачу о движении, так как в новой системе координат канонические уравнения могут быть непосредственно проинтегрированы. Для нахождения искомого преобразования и его выполнения нужно найти какое-либо полное решение уравнения в частных производных Гамильтона — Якоби.  [c.275]

Задача 1. Решить уравнение в частных производных Гамильтона — Якоби методом разделения переменных для случая однородного гравнтацнонного поля (см. задачу 2, п. 5). Из этого решения получить lF-функцию Гамильтона и показать, что результат совпадает с прежним результатом, когда U -фyнкция строилась на основе полученного предварительно полного решения уравнений движения.  [c.301]

Резюме. Механические траектории консервативных систем могут быть получены из частного решения уравнения в частных производных Гамильтона — Якоби с помощью построения ортогональных траекторий к поверхностям S = onst. Это построение аналогично построению волнового фронта и световых лучей в геометрической оптике. Поверхности равного времени в оптике соответствуют поверхностям равного действия в механике, а принцип наименьшего времени Ферма — принципу наименьшего действия или принципу Якоби. И оптические и механические явления могут быть описаны как с помощью волн, так и с помощью частиц. При описании с помощью волн мы оперируем с бесконечным семейством поверхностей, которое определяется уравнением в частных производных Гамильтона. При описании же с помощью частиц мы оперируем с ортогональными траекториями к этим поверхностям, и они определяются принципами. Ферма и Якоби. Аналогия распространяется только на траектории механических частиц, не касаясь того, как движение происходит во времени. Кроме того, ири этой аналогии среди всех возможных механических траекторий выделяются те, по которым движение начинается перпендикулярно к заданной поверхности.  [c.314]

Заметим, наконец, что для того, чтобы иметь явные формулы рассмотренного выше канонического преобразования, нет необходимости начинать с уравнений (131), (135), которые предполагают интегрирование уравнения Гамильтона — Якоби удобнее обратиться к интегралам кеплерова движения, которые получаются элементарным путем, и ввести в них, вместо первоначальных эллиптических элементов, аргументы (139).  [c.355]

В содержание книги включен не только традпционньп материал курсов аналитической механики. Значительное место удел-ено применению к задачам механики методов качественной теории дифференциальных уравнений, на современном уровне трактуются вопросы о ра Дсляемости переменных в уравнении Гамильтона — Якоби, дается рассмотрение эргодических теорем, включая теорему Пуанкаре о возвращении нашл свое место несколько отличное от принятого и приспособленное к задачам динамики изложение теории устойчивости движения, включающее теоремы Ляпунова. В заключительных главах, посвященных ограниченной задаче трех тел и задаче трех тел, автору в небольшом объеме удалось дать хорошее представление о постановках и трудностях этой классической в истории точных наук проблемы.  [c.2]


Смотреть страницы где упоминается термин Гамильтона—Якоби движения : [c.376]    [c.306]    [c.163]    [c.8]    [c.313]    [c.325]    [c.341]    [c.345]    [c.346]    [c.84]   
Динамические системы-3 (1985) -- [ c.12 , c.13 ]



ПОИСК



Гамильтон

Гамильтона — Якоби

ДИФФЕРЕНЦИАЛЬНОЕ УРАВНЕНИЕ В ЧАСТНЫХ ПРОИЗВОДНЫХ ГАМИЛЬТОНА—ЯКОБИ Важная роль производящей функции в задаче о движении

Зэк гамильтоново

Интегралы движения, преобразование Рауса, канонические уравнения Гамильтона, уравнения Якоби — Гамильтона, принцип Гамильтона — Остроградского

Использование теории Гамильтона—Якоби в задаче движения искусственного спутника

Поле гравитационное движение приложение теоремы Гамильтона — Якоби

Теорема Гамильтона—Якоби движения

Уравнение Гамильтона-Якоби движений

Якоби

Якоби Якоби

Якоби движения



© 2025 Mash-xxl.info Реклама на сайте