Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Частные случаи уравнения Гамильтона — Якоби

Таким образом, главная функция Гамильтона осуществляет переход к постоянным координатам р и постоянным импульсам а. Решая уравнение Гамильтона — Якоби, мы в то же время получаем решение рассматриваемой механической задачи. Говоря на математическом языке, мы установили соответствие между 2п каноническими уравнениями движения, которые являются обыкновенными дифференциальными уравнениями первого порядка, и уравнением Гамильтона — Якоби, которое является уравнением первого порядка в частных производных. Такое соответствие имеет место не только для уравнений Гамильтона известно, что каждому уравнению первого порядка в частных производных соответствует определенная система обыкновенных дифференциальных уравнений первого порядка. В данном случае эта связь между рассматриваемым уравнением в частных производных и соответствующими каноническими уравнениями может быть объяснена происхождением этих уравнений от общего вариационного принципа — модифицированного принципа Гамильтона.  [c.304]


Роль дифференциального уравнения в частных производных в теориях Гамильтона и Якоби. В предыдущей главе (гл. VII, п. 9) отмечалось, что впервые в аналитической механике фундаментальное уравнение в частных производных открыл Гамильтон. Он также первый выдвинул идею о фундаментальной функции, из которой можно было бы получить при помощи простых дифференцирований и исключения переменных все механические траектории. Однако первоначальная схема Гамильтона была практически неприменима. Более того, главная функция Гамильтона удовлетворяла двум уравнениям в частных производных. Второе уравнение с точки зрения теории интегрирования является ненужным усложнением. С другой стороны, в теории Якоби требуется найти лишь один полный интеграл основного дифференциального уравнения. В случае систем с разделяющимися переменными такой интеграл может быть найден. Поэтому при поверхностном подходе создается впечатление, что Якоби освободил теорию Гамильтона от ненужного усложнения, приведя ее к схеме, применимой на практике,  [c.291]

Здесь уместно следующее замечание, аналогичное сделанному в конце предыдущего пункта. Уравнения (56 ), (56"), которым удовлетворяет действие А ( ( ), в зависимости от того, рассматриваются ли в качестве независимых переменных q или были найдены Гамильтоном, который показал также, какую пользу можно извлечь из действия А как для интегрирования соответствующей системы Гамильтона, так и для обнаружения ее важных свойств. Якоби принадлежит также и в этом частном случае кинетического потенциала, не зависящего от t, более легкий метод интегрирования гамильтоновой системы, полностью развитый в п. 39 предыдущей главы и основанный на знании какого-нибудь полного интеграла только одного уравнения (56 ).  [c.447]

Мы рассмотрели весьма частные случаи, когда специальная структура функции Гамильтона позволяет дать общий конструктивный способ построения общего интеграла уравнения Гамильтона-Якоби. Следует, однако, отметить, что указанные способы разделения переменных применимы к таким важным задачам механики, как задача о гармоническом осцилляторе, задача о движении физического маятника, задача двух тел, задача о движении тяжелого твердого тела вокруг неподвижной точки в случае Лагранжа и др.  [c.365]

Однородное поле. Рассмотрим теперь приложения теоремы Гамильтона — Якоби к решению конкретных задач. Начнем с исследования трех простых примеров, для которых в 15.9 мы нашли явный вид главной функции. Эта функция сама представляет полный интеграл уравнения Гамильтона в частных производных, но те полные интегралы, которые мы получим для каждого из рассматриваемых случаев, фактически не будут главными функциями.  [c.291]


Якоби указывает, что случай, когда одновременно имеют место закон живых сил и принцип наименьшего действия, очень важен <(Гамильтон заметил, что в этом случае задача может быть сведена к нелинейному дифференциальному уравнению в частных производных первого порядка. Если найдено одно его полное решение, то получаются все интегральные уравнения. Функцию, определенную этим дифференциальным уравнением, Гамильтон называет характеристической.  [c.826]

Задачи построения полного интеграла уравнения Гамильтона — Якоби и общего интеграла канонической системы, как доказывается в теории дифференциальных уравнений, математически эквивалентны. Степень трудности их, вообще говоря, одинакова. Однако может быть отмечен ряд частных случаев, когда уравнение Гамильтона — Якоби может оказаться более податливым, чем каноническая система. Об этом говорится в п. 10.14. Более важно то обстоятельство, что решение (10), получаемое с помощью теоремы Якоби, является каноническим преобразованием, а это, как мы увидим в главе 11, значительно упрощает форму уравнений возмущенного движения.  [c.537]

Явное решение гамильтоновых уравнений в канонической форме в большинстве случаев может быть получено с помощью метода разделения переменных [183]. В этом случае задача интегрирования для п-сте-пенной гамильтоновой системы сводится к отысканию решения уравнения Гамильтона-Якоби в частных производных  [c.77]

Уравнение Гамильтона — Якоби представляет собой нелинейное уравнение с частными производными и решение этого уравнения может быть найдено только в немногих частных случаях.  [c.313]

Полный интеграл уравнения Гамильтона — Якоби. Таким образом, в общем случае имеем для определения функции V или функции 5 дифференциальное уравнение в частных производных. Это уравнение допускает много решений, но Гамильтон  [c.359]

Теорема 13 установлена Якоби в 1837 г. Следует заметить, что обратная теорема о том, что решение уравнения с частными производными типа Гамильтона приводится к решению системы обыкновенных дифференциальных уравнений (дифференциальных уравнений характеристик), имеющей в рассматриваемом случае форму Гамильтона, высказана Пфаффом и Коши в развитие еще более ранних исследований Лагранжа и Монжа, еще до того как Гамильтон и Якоби начали заниматься вопросами динамики (Э. Уиттекер [57]). Наиболее эффективный прямой метод решения уравнения Гамильтона— Якоби — это метод разделения переменных полный интеграл есть сумма слагаемых, каждое из которых зависит только от одной из переменных Ж1,. .., ж , I.  [c.77]

При помощи S-функции Якоби производится преобразование изоэнергетических поверхностей Н = Е в плоскости Qn = Е. Смысл уравнения в частных производных заключается здесь в том, что в одну из новых переменных Q преобразуется функция Гамильтона. В гамильтоновом случае ситуация совершенно иная. Построение Гамильтона вовсе не преобразует изоэнергетические поверхности в плоскости оно целиком развертывается на изоэнергетической поверхности Я = , не выходя за ее пределы. В случае Якоби мы имеем регулярное преобразование, разрешимое как относительно Qk, Pk, так и относительно Qk, Pk- Здесь нет тождества, которому бы удовлетворяли координаты, так как уравнение в частных производных устанавливает некоторое соотношение не между одними qk, pt, а между q , Pk и Q .  [c.293]

На самом же деле величина ]/2т Е — V) равна импульсу mv поэтому, исходя из уравнения в частных производных Гамильтона—Якоби, соотношение (8.7.13) в случае механики должно быть записано в виде  [c.313]

Однако, так л<е как и в случае задачи двух тел (см. часть 3), применить непосредственно к системе (14.88) метод Гамильтона — Якоби не удается, поскольку в соответствующем уравнении с частными производными переменные пе разделяются.  [c.777]

По теории Гамильтона—Якоби, развитой в 3, полное регпение системы (17) получается в том случае, если найти зависящее от трех параметров 6, 2, Сз решение w xk, iki s) дифференциального уравнения в частных производных  [c.59]


Разделение переменных в уравнении Гамильтона — Якоби. Из содержания предыдущего параграфа может показаться, что метод Гамильтона — Якоби не имеет практических преимуществ, так как вместо решения 2п обыкновенных дифференциальных уравнений он требует решения дифферециального уравнения в частных производных, что, как известно, сложнее. Однако при некоторых условиях переменные уравнения Гамильтона — Якоби можно разделить, и тогда решение задачи удается свести к квадратурам. Именно в этом случае метод Гамильтона — Якоби становится полезным в практическом отношении.  [c.312]

В этой главе мы введем функцию Гамильтона — Якоби, которая является решением дифференциального уравнения в частных производных, называемого уравнением Гамильтона — Якоби. Функция Гамильтона — Якоби ведет к гамильтониану, содержащему только одну совокупность канонич еских переменных. Находятся решения уравнения Гзмильтоыа — Якоби для нескольких простых случаев, в том числе для задачи Кеплера. Во втором параграфе этой главы вводятся так называемые переменные действие — угол . Их значение видно из того, что переменные действия представлянэт собой адиабатические инварианты. Адиабатические инварианты играли существенную роль в старой квантовой теории и имеют немалое значение в теории ускорителей. Они кратко рассмотрены в последнем параграфе этой главы.  [c.153]

Решение уравнений в частных производных (92), (93) в конкретных задачах часто представляет собой значительно более простую задачу, чем решение пеусредненных уравнений (38), (91). Однако в общем случае остается неясным вопрос о близости решепий первоначального и усредненного уравнения Гамильтона — Якоби, так как обоснование метода усреднения, примененного непосредственно к уравнениям в частных производных, далеко от завершения.  [c.212]

Успех Б решении указанных задач механики и геометрии объясняется возможностью разделения переменных в уравнении в частных производных (33) при введении эллиптических координат. Следует сказать, что функция S определяется в простом виде в том случае, когда возможно ввести та-1сую систему обобщенных координат, которая позволила бы разделить переменные в уравнениях Гамильтона — Якоби.  [c.20]

В формальном отношении очень гибким при отыскании решения оказывается уравнение Гамильтона —Якоби. Наиболее плодотворно оно используется Пуанкаре в его исследованиях на эту тему во втором томе его Methodes nouvelles . Большое преимущество уравнений в частных производных лежит в почти исчерпывающей возможности, которую они представляют для введения избыточных постоянных интегрирования. Используя это свойство и исходя из метода Пуанкаре, мы показали [88], как. можно различными способами прийти к тригонометрическим выражениям для элементов. Проведем здесь эти исследования более обстоятельно. При этом мы ограничимся астероидной задачей трех тел, ибо в этом случае рассуждения будут более короткими. С другой стороны, это связано с тем обстоятельством, что сейчас не существует каких-либо практических методов, чтобы выразить численно координаты в тригонометрической форме в общей задаче трех тел. Теоретическую возможность такого представления мы показали в предыдущем параграфе.  [c.603]

Теорема 12 отмечена Пуанкаре в п. 19 его Новых методов небесной механики (1892) [51]. Там же дано общее определение инвариантных соотношений, занимающих промежуточное положение между решениями и интегралами. Теорема Пуанкаре переоткрыва-лась разными авторами (см., например, трактат Т. Леви-Чивита и У. Амальди [43], гл.Х). На самом деле теорема 12 фактически содержится в теории характеристик Монжа дифференциальных уравнений в частных производных первого порядка. В отличие от уравнения Гамильтона—Якоби, в теории Монжа рассматриваются уравнения, которые могут явно содержать неизвестную функцию. Поэтому в общем случае теорему 12 формулируют в несколько иной форме (см. по этому поводу [41]).  [c.74]

Интегрирование уравнения Гамильтоиа-Якоби. Вообще говоря, интегрирование нелинейных уравнений с частными производными первого порядка представляет очень трудную и сложную задачу. Поэтому интегрировать уравнение Гамильтона-Якоби почти никогда не удается, Только в некоторых наиболее простых случаях оказывается возможным получить полный интеграл каким-нибудь искусственным способом. Эти случаи в небесной механике немногочисленны, и характерно то, что эти же случаи могут быть исследованы и непосредственно, не прибегая к помощи теоремы Гамильтона-Якоби. Неизвестно пока ни одного случая, который допускал бы разрешение только этим методом, так что эффективность его весьма невелика. Однако с теоретической стороны он представляет большой интерес, и не исключена возможность, что в будущем метод Гамильтона-Якоби позволит решать такие задачи, которые не поддаются разрешению никакими другими методами.  [c.405]

Лиувилль первый указал случай, когда уравнение Гамильтона-Якоби интегрируется в квадратурах. Затем более общий случай указал Штек-кель, и позднейшие исследования были посвящены различным обобщениям результатов Штеккеля и Лиувилля. В 1911 г. Бургатти поставил общую задачу —найти все случаи, в которых уравнение Гамильтона-Якоби интегрируется в квадратурах. Его анализ привел к довольно общей форме уравнения, из которой все предыдущие получаются как частные случаи.  [c.405]

Резюме. Вместо того чтобы пытаться непосредственно интегрировать канонические уравнения, мы можем применить процесс преобразования. При этом для консервативной системы отыскивается каноническое преобразование, переводящее функцию Гамильтона Н в одну из новых переменных. Для реоном-ной системы ищется зависящее от времени каноническое преобразование, преобразующее Н в нуль. В обоих случаях найденное преобразование решает задачу о движении, так как в новой системе координат канонические уравнения могут быть непосредственно проинтегрированы. Для нахождения искомого преобразования и его выполнения нужно найти какое-либо полное решение уравнения в частных производных Гамильтона — Якоби.  [c.275]


Первые 6 лекций Якоби посвящает изложению основных принципов механики принципу сохранения движения центра тяжести системы, принципу живой силы, принципу площадей и принципу наименьшего действия. С 10-ой лекции Якоби развивает теорию множителя" систем обыкновенных дифференциальных уравнений, являющуюся обобщением теории эйлеров-ского интегрирующего множителя. Якоби показывает каким образом можно в целом ряде случаев построить с помощью последнего множителя" всю систему п независимых интегралов. Изложив подробно теорию этого множителя, Якоби затем применяет ее к решению ряда механических задач. С 19-ой лекции Якоби, исходя из вариационного принципа Гамильтона, излагает тот метод интегрирования уравнения с частными производными первого порядка, который известен под названием метода Якоби-Гамильтона". В следующих лекциях этот метод примендется к ряду задач, взятых главным образом из области небесной механики. В 26 лекции Якоби излагает теорию эллиптических координат и показывает их приложение к разысканию геодезических линий эллипсоида, к задаче построения карт, к выводу основной теоремы Абеля и проч. Наконец, последние лекции Якоби посвящены изложению его классических методов интегрирования нелинейных уравнений в частных производных первого порядка.  [c.4]

Описание движения С. с с. п. обычно основывается на ур-ниях, связывающих обобщённые координаты и обобщённые импульсы (в т. ч. поля, токи, напряжения) входящих Ь неё объектов. Порядок этих ур-ний определяется числом степеней свободы С, с с. и. Так, плоское движение маятника а иоле тяжести или изменения тока в Г, С, Д-контуре описывается дифференц. ур-ниями 2-го порядка и соответствует С. с с. п. с одной степенью свободы. Ур-ния движения консервативных (сохраняющих энергию) С. с с, п. могут быть получены из вари-ац. принципа (см. Наименьшего действия принцип). При этом различаются три оси. типа эквивалевтных описаний движения С. с с. п. через Лагранжа ф-цию, содержащую обобщённые координаты и скорости, через Гамильтона ф-цию, содержащую обобщённые импульсы и координаты, и через ф-цию действия (см, Гамильтона — Якоби уравнение), выраженную через обобщённые координаты и их производные. В первых двух случаях в ур-ния входят полные производные по времени, в последнем случав — частные производные.  [c.535]

Представление координат в проблеме Делоне как функций времени оказывается вообще достаточно простым при использовании дифференциального уравнения в частных производных Гамильтона — Якоби. В качестве обобщенных координат в зависимости от обстоятельств можно использовать либо и у , либо х и Жд. В предыдущем случае необходимо рассмотреть ди ерен-циальное уравнение  [c.554]

Первые общие теоремы касаются движения центра массы н были даны Ньютоном в Началах . Десять интегралов н теоремы, к которым онн приводят, были известны Эйлеру. Следующим общим резуль ятом было доказательство существования и рассмотрение свойств неизменной плоскости Лапласом в 1784 г. В зимнем семестре 1842 4i г. Якоби прочел курс лекций по дишмнке в Кенигсбергском университете. В этом курсе он привел результаты некоторых очень важных исследований интегрирования диференциальных уравнений механики. Во всех случаях, когда силы завися г от одних координат и когда существует потенциальная функция (условия, выполненные в задаче я тел), он доказал, что если все интегралы, кроме двух, найдены, то последние два могут быть всегда найдены. Он также показал, развивая некоторые исследования В. Гамильтона, что задача может быть приведена к решению диференциального уравнения с частными производными, порядок которого в два ряза меньше порядка первоначальной системы. Лекции Якоби опубликованы в дополнительном томе к собранию его сочинени.1. Они очень важны сами по себе, а также абсолютно необходимы как вступление к чтению составивших эпоху мемуаров Пуанкаре и должны быть доступны для каждого изучающего небесную механику.  [c.246]

Кстати, Якоби (см. "Приложения" Л. Полака в [12]) критиковал 1 а и1льтона за то, что тот не доказал совместности своих уравнений. В общем случае Гамильтон так и не смог это сделать. Для частного случая задач в центральном поле у него доказательство совместности (2.3) есть.  [c.66]


Смотреть страницы где упоминается термин Частные случаи уравнения Гамильтона — Якоби : [c.200]    [c.224]    [c.265]    [c.212]    [c.29]   
Смотреть главы в:

Небесная механика  -> Частные случаи уравнения Гамильтона — Якоби



ПОИСК



Гам??л?.то??а Якоби уравнение уравнению

Гамильтон

Гамильтона уравнения

Гамильтона — Якоби

Гамильтона — Якоби уравнени

Гамильтона —Якоби уравнение

Гамильтона-Якоби уравнение уравнения Гамильтона-Якоби

Зэк гамильтоново

К п частный

Уравнение Гамильтона-Якоб

Уравнения Якоби

Частные случаи

Частный случай

Якоби

Якоби Якоби



© 2025 Mash-xxl.info Реклама на сайте