Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Уравнение Остроградского—Якоби

Это уравнение называется уравнением Остроградского — Якоби.  [c.382]

Теорема Остроградского — Якоби, на которой основывается предложенный ими метод, формулируется так если известен полный интеграл уравнения Остроградского — Якоби, то 2s независимых интегралов канонической системы уравнений (132.5) имеют следующий вид  [c.382]

Подставляя (140.3) в уравнение (140.1), получаем уравнение Остроградского — Якоби для определения W, не содержащее времени t  [c.385]


Тогда полный интеграл уравнения Остроградского—Якоби имеет вид  [c.387]

Какой вид имеет уравнение Остроградского —Якоби  [c.390]

Какой вид имеет уравнение Остроградского—Якоби в случае, когда функция Гамильтона явно от времени не зависит  [c.390]

Таким образом, из теоремы Остроградского- Якоби следует, что в том случае, если известен полный интеграл уравнения Остроградского-Якоби, переменные д, и Р] определяются как функции времени и 2в произвольных постоянных а1,  [c.570]

В случае, если функция Н явно от времени не зависит, уравнение Остроградского Якоби имеет вид  [c.571]

Какой вид имеет уравнение Остроградского-Якоби  [c.575]

Найти канонические уравнения движения материальной точки и уравнение ее движения, применив метод интегрирования Остроградского — Якоби.  [c.385]

Пример 93. Материальная точка массой т движется под действием силы притяжения к некоторому центру О. Зная, что силовая функция поля равна U (г), где /- — расстояние от точки до центра О, найти канонические уравнения и уравнения ее движения, применив метод интегрирования Остроградского—Якоби, Решение. Выберем за обобщенные координаты материальной точки ее полярные координаты г и ф. Так как составляющие скорости точки, выраженные н полярных координатах, определяются по формулам  [c.387]

Пример 94. Материальная точка массой т движется в однородном поле силы тяжести. Найти методом Остроградского—Якоби траекторию точки и уравнение ее движения.  [c.388]

Как по методу Остроградского—Якоби получаются интегралы канонической системы уравнений  [c.390]

Таким образом, вопрос об интегрировании системы канонических уравнений динамики приведен к интегрированию дифференциального уравнения (11.350) в частных производных первого порядка. Дифференциальное уравнение (11.350) далее будем называть уравнением Остроградского — Гамильтона — Якоби )  [c.356]

Чтобы найти общее решение системы канонических, уравнений динамики, достаточно найти функцию V как полный интеграл дифференциального уравнения с частными производными первого порядка уравнения Остроградского — Гамильтона — Якоби) и продифференцировать этот интеграл по обобщенным координатам и постоянным интегрирования а . Приравнивая частные производные от V по обобщенным координатам обобщенным импульсам р , получим первую группу интегралов канонической системы, а приравнивая постоянным интегрирования производные от V по а , найдем вторую группу интегралов.  [c.358]


Было показано, что при известном законе движения материальной системы можно построить функцию W. Теперь поставим обратную задачу, найдя функцию W без предварительного определения закона движения, найти закон движения материальной системы. Для этого докажем, что главная функция Гамильтона удовлетворяет уравнению (11.350) с частными производными первого порядка, т. е. уравнению Остроградского — Гамильтона — Якоби. Ради краткости это уравнение далее будем называть уравнением Остроградского.  [c.371]

Уравнение Остроградского — Гамильтона — Якоби 356  [c.542]

В разработку всей этой теории существенный вклад внес М. В. Остроградский. В исследованиях по уравнениям динамики он дал каноническую форму уравнений динамики и установил теоремы о характеристической функции, принимая связи системы зависящими от времени. В работах этого цикла, независимо от Гамильтона и Якоби, он развивает также и теорию того уравнения в частных производных, которое обычно называется уравнением Гамильтона — Якоби. Независимо от Гамильтона и Якоби Остроградский доказал, что задача определения интегралов канонических уравнений эквивалентна нахождению полного интеграла некоторого дифференциального уравнения в частных производных. Все искомые интегралы канонических уравнений можно найти дифференцированием полного интеграла уравнения в частных производных.  [c.217]

При решении задачи методом Остроградского — Якоби отсюда приходим к следующему уравнению в частных производных, определяющему характеристическую функцию W  [c.209]

Запишем уравнение Остроградского — Гамильтона — Якоби для указанных случаев непотенциальных систем  [c.169]

Связь решений уравнения Лиувилля и уравнения Остроградского—Гамильтона—Якоби  [c.170]

Найдем связь между решением уравнения (6.98) и полным интегралом уравнения Остроградского — Г амильтона — Якоби. Полный интеграл уравнения Остроградского — Гамильтона имеет структуру (6.76), т. е. является функцией времени, координат и постоянных интегрирования. Согласно теореме Остроградского— Гамильтона — Якоби, по полному интегралу определя-ём общее решение канонической системы уравнений, зависящее от постоянных т] и  [c.175]

Следовательно, зная полный интеграл уравнения Остроградского— Гамильтона — Якоби, можно найти общее решение уравнения Лиувилля.  [c.176]

Структурные аналогии ряда тем аналитической механики выступают ярче, если в основу выводов положить формулу первой вариации функционала. На этом пути структурно объединяются такие, казалось бы, разные вопросы, как вариационный принцип Гамильтона—Остроградского, принцип Эйлера—Лагранжа, законы сохранения мер движения в ньютоновской механике - сохранение количества движения, механической энергии и момента количества движения, закон сохранения обобщенного импульса и обобщенный закон сохранения энергии в аналитической механике, интегральные инварианты динамики, уравнения Гамильтона — Якоби и др.  [c.281]

Метод Остроградского-Якоби позволяет свести задачу об отыскании 2в первых интегралов дифференциальных уравнений канонической системы (133.5) к задаче определения полного интеграла некоторого уравнения в частных производных первого порядка.  [c.569]

Теперь на основании теоремы Остроградского-Якоби, пользуясь формулами (140-3) и (140.4 ), можно составить полную систему независимых интегралов канонических уравнений движения  [c.571]


Интегралы движения, преобразование Рауса, канонические уравнения Гамильтона, уравнения Якоби— Гамильтона, принцип Гамильтона — Остроградского  [c.372]

М. В. Остроградский распространил методы аналитической механики на теорию соударений твердых тел, применив развитую мм теорию движения систем с нестационарными связями. М. В. Остроградскому принадлежит открытие, независимо от К. Якоби, особого метода интегрирования уравнений динамики. Наконец, еще раз напомним, что М. В. Остроградский независимо  [c.37]

Канонические преобразования. Уравнение и теорема Остроградского — Гамильтона — Якоби  [c.352]

На основании теоремы Остроградского — Гамильтона — Якоби найдем общее решение системы канонических уравнений в следующем виде  [c.375]

Такпм образом, 1 3 теоремы Остроградского — Якоби следует, что в том случае, если известен Юлн1з1Й интеграл уравнения Остроградского — Якоби, то перемен ые q и ру определяются как функции времени t и 2s произвольных постоянных а , о,. .., Pj, Ра, Ps ИЗ уравнений (139.3) и (139.4), представляющих собой ПО отношению к q, и р/ систему алгебраических уравнений.  [c.384]

Хотя интегрнрованпе уравнения Остроградского — Якоби (139.1) в общем случае не упрон 1ает решения задачи, тем не менее, как указывалось выше, во многих случаях проще найти полный интеграл уравнения (139.1), а затем и интегралы канонической системы уравнений Гамильтона (132.5).  [c.384]

Теперь, на основании теоремы Остроградского — Якоби, пользуясь формулами (139.3) и (139.4), можно составить полную систему независимых интегралов канонических уравнений движ тгия  [c.385]

Итак, основные этапы развития аналитической динамики таковы первым шагом явилось установление лагранжевой формы уравнений движения, затем лагранжев метод вариации произвольных постоянных и аналогичная теория Пуассона и связанные с нею проблемы интегрирования затем Гамильтон представил интегральные уравнения посредством единственной характеристической функции, определяемой а posteriori посредством интегральных уравнений, предполагаемых известными, или из того условия, что она должна одновременно удовлетворять двум дифференциальным уравнениям в частных производных Гамильтон же нашел новую форму уравнений движения Якоби свел интегрирование дифференциальных уравнений динамики к нахождению полного интеграла единственного дифференциального уравнения в частных производных он же развил теорию последнего множителя системы дифференциальных уравнений движения Остроградский рассмотрел проблему интегрирования уравнений динамики Раус нашел новую форму дифференциальных уравнений движений Пуанкаре развил теорию интегральных инвариантов наконец,  [c.848]

Разделение мехапич. систем на голономные и неголо-номные весьма существенно, так как к Г. с. применимы многие сравнительно простые ур-ния механики и общие принципы, к-рые не справедливы для неголопом-ных систем. Движение Г. с. может изучаться с помощью Лагранжа уравнений механики, Гамильтона уравнений, Гамильтона — Якоби уравнения, а также с помощью наименьшего действия принципа В форме Гамильтона — Остроградского или Мопертюи — Лагранжа. К Г, с. приложимы также все те общие теоремы механики и дифференциальные вариационные принципы механики, К-рые справедливы и для неголономных систем.  [c.515]

Заметим, что в XX в. получила дальнейшее развитие теория интегрирования уравнения Гамильтона — Остроградского — Якоби методом разделения переменных. Т. Леви-Чивита установил критерий возможной классификации соответствующих динамических задач с любым числом степеней свободы. Найденные им общие условия, которым должна удовлетворять функция Гамильтона для того, чтобы уравнение Гамильтона — Остроградского — Якоби интегрировалось в квадратурах методом разделения переменных, легли в основу позднейших исследований. Ф. Далль-Аква составил классификацию указанного характера для систем с тремя степенями свободы.  [c.103]

Задача интегрирования системы уравнений (1), как известно, может быть сведена к отысканию полного интеграла некоторого уравнения в частных производных, впервые найденного Гамильтоном. В основе этого метода лежит знаменитая теорема, установленная К. Якоби [I] и М. В. Остроградским [2]. Цель настоящей работы — рассмотрение одного видоизменения данного метода, вытекающего из свойства взаимности или, лучше сказать, свойства переместимости канонических переменных в уравнении Гамильтона — Якоби. Это видоизменение метода, иной раз, ведет к более простой задаче интегрирования системы уравнений (1) и поэтому заслуживает особого рассмотрения.  [c.60]

М. в. Остроградскии и независимо от него Якоби разработали метод, применение которого к нахождению интегралов канонической системы уравнений (132.5) во многих случаях оказывается проще непосредственного интегрирования зтой системы уравнений.  [c.382]


Выдающиеся результаты в области общих принципов механики получили М. В. Остроградский, В. Гамильтон, К. Гаусс и Г. Герц. Теория интегрирования уравнений динамики была разработана В. Гамильтоном, М. В. Остроградским и К. Якоби, добившихся независимо друг от друга фундаментальных результатов в этой части механики. В общей теории движения систем материальных точек глубокие исследования провел С. А. Чаплыгин. С. А. Чаплыгину принадлежит особая система дифференциальных уравнений движения систем с неголономными связями. Теория движения систем с неголопомнымн связями является одним из сравнительно новых разделов теоретической механики. Эта теория непосредственно связана с современными исследованиями свойств так называемых неголопомиых пространств, обобщающих в известном смысле пространства Лобачевского и Ри.мапа.  [c.38]

Очерком общих методов интегрирования уравнений динамики заканчивается вторая часть этой книги, содержащая, вместе с ГЛ. I первой части, краткое рассмотрение основ аналитической механики. Оставлен в стороне ряд вопросов, как, например, распространение метода Остроградского — Гамильтона — Якоби на системы с избыточными координатами ) на случай неголоном-ных систем ), колебания с малыми и конечными амплитудами систем при наличии неголономиых связей и т. д.  [c.396]


Смотреть страницы где упоминается термин Уравнение Остроградского—Якоби : [c.571]    [c.571]    [c.573]    [c.356]   
Курс теоретической механики Ч.2 (1977) -- [ c.382 ]



ПОИСК



Гам??л?.то??а Якоби уравнение уравнению

Интегралы движения, преобразование Рауса, канонические уравнения Гамильтона, уравнения Якоби — Гамильтона, принцип Гамильтона — Остроградского

Канонические преобразования. Уравнение и теорема Остроградского— Гамильтона — Якоби

Остроградский

Остроградского уравнение

Уравнение Остроградского — Гамильтона — Якоби

Уравнение Остроградского — Гамильтона — Якоби преобразование Крылова

Уравнение Остроградского — Гамильтона — Якоби частот (характеристическое)

Уравнения Якоби

Якоби

Якоби Якоби



© 2025 Mash-xxl.info Реклама на сайте