Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Уравнение Гамильтона — Якоби. Теорема Якоби

Если ранг ротора поля и постоянен, то при и = 3 он может быть равен либо нулю, либо двум. В первом случае решение будет потенциальным и интегрируемость уравнений Гамильтона вытекает из теоремы Якоби. Если ранг равен двум, а функция  [c.215]

Существует, как известно, множество полных интегралов уравнений в частных производных, и нет гарантии, что найденный нами полный интеграл дифференциального уравнения Гамильтона будет представлять искомую главную функцию. Но тогда возникает вопрос может ли любой полный интеграл быть полезен для наших целей Ответ на этот вопрос оказывается утвердительным, и это обстоятельство составляет сущность теоремы Гамильтона — Якоби.  [c.284]


Итак, с помощью любого полного интеграла дифференциального уравнения Гамильтона в частных производных можно получить полное решение задачи Гамильтона, т. е. интегралы гамильтоновых уравнений движения. Дифференциальное уравнение для функции S впервые было получено Гамильтоном в 1834 г., а доказательство всей теоремы было дано Якоби в 1837 г. ).  [c.286]

Теорема 9.4.2. (Якоби). Пусть 5(<,91,..., 9п, 1, чОп) — полный интеграл уравнения Гамильтона-Якоби. Тогда соотношения  [c.644]

Возможность знака перед радикалом здесь можно не учитывать, так как согласно теореме 9.4.2 достаточно найти любую функцию 51, зависящую от одной произвольной постоянной, например Л, и удовлетворяющую уравнению Гамильтона-Якоби.  [c.647]

Рассмотренные примеры убеждают, что случаи, когда эффективно работает метод разделения переменных, встречаются достаточно часто. Полезно иметь критерий, устанавливающий факт разделимости переменных на основе анализа структуры уравнения Гамильтона-Якоби. Для систем, кинетическая энергия которых зависит только от квадратов обобщенных скоростей, такой критерий доставляет теорема Штеккеля.  [c.654]

Отметим сходство между полученным решением и тем, которое следует из теоремы 9.4.2 о полном интеграле уравнения Гамильтона-Якоби.О  [c.680]

Теорема Якоби — Пуассона. Пусть переменные Pi удовлетворяют дифференциальным уравнениям Гамильтона  [c.283]

КАНОНИЧЕСКИЕ УРАВНЕНИЯ. ТЕОРЕМЫ ЯКОБИ И ПУАССОНА. ПРИНЦИПЫ ГАМИЛЬТОНА, НАИМЕНЬШЕГО ДЕЙСТВИЯ И НАИМЕНЬШЕГО ПРИНУЖДЕНИЯ  [c.364]

Теперь мы можем сформулировать доказанную теорему. Теорема Якоби. Если S(t, qi, а.-) — некоторый полный интеграл уравнения Гамильтона — Якоби (6), то конечные уравнения движения голономной системы с данной функцией Н могут быть записаны в виде )  [c.156]

ТЕОРЕМА ЯКОБИ ОБ ИНТЕГРИРОВАНИИ ДИФФЕРЕНЦИАЛЬНОГО УРАВНЕНИЯ ГАМИЛЬТОНА В ЧАСТНЫХ ПРОИЗВОДНЫХ  [c.306]

Теорема Якоби-Пуассона. Пусть переменные д, pi удовлетворяют дифференциальным уравнениям Гамильтона  [c.335]

Теорема (Якоби). Если S qi о , t) — полный интеграл уравнения Гамильтона-Якоби (7), содержащий п произвольных постоянных 1, 2,..., о-п, то решение (6) уравнений (1) находится из соотноше-  [c.359]

Теорема Гамильтона — Якоби (доказательство второе). Теорему Гамильтона — Якоби можно вывести непосредственно из теоремы об эквивалентности. Пусть 5 = 5 (д а t) будет полным интегралом уравнения Гамильтона в частных производных  [c.289]


Замечания по теореме Гамильтона — Якоби. Эта изящная теорема, доказанная в 16.2 и 16.4, имеет фундаментальное значение как для теории, так и для приложений. До сих пор, исследуя динамическую систему какого-либо частного вида, мы составляли уравнения движения, после чего задача сводилась к интегрированию этих уравнений. Совершенно иначе обстоит дело в методе Гамильтона — Якоби. Как только найден один полный интеграл уравнения Гамильтона в частных производных, сразу могут быть написаны интегралы уравнений движения. Вопрос заключается лишь в том, насколько просто может быть найден полный интеграл. Однако, как будет показано, для большей части задач классической механики нахождение полного интеграла не вызывает каких-либо затруднений.  [c.290]

Большинство систем, встречающихся в приложениях, консервативны, и поэтому теорема Гамильтона — Якоби чаще всего применяется в указанной выше форме. Практически обычно начинают не с дифференциального уравнения Гамильтона, а с модифицированного уравнения" в частных производных (16.5.4).  [c.290]

Однородное поле. Рассмотрим теперь приложения теоремы Гамильтона — Якоби к решению конкретных задач. Начнем с исследования трех простых примеров, для которых в 15.9 мы нашли явный вид главной функции. Эта функция сама представляет полный интеграл уравнения Гамильтона в частных производных, но те полные интегралы, которые мы получим для каждого из рассматриваемых случаев, фактически не будут главными функциями.  [c.291]

Рассмотрим теперь задачу, когда функция Гамильтона равна Н К, и составим уравнения движения в новых переменных (а Р). По теореме Якоби ( 25.1) новые уравнения движения будут иметь вид  [c.507]

Третье доказательство теоремы Якоби. Мы видели в 22.1, что уравнения Гамильтона могут быть записаны в форме  [c.515]

Другой аналогичный результат такого же типа относится к теореме Гамильтона — Якоби. Предположим, что для заданной динамической системы с функцией Гамильтона Н нам известен полный интеграл S q а t) уравнения Гамильтона в частных производных. Разрешим уравнения  [c.522]

Установить единое правило для строгого решения дифференциального уравнения Гамильтона—Якоби невозможно. Однако во многих случаях можно найти решение благодаря теореме о том, что 5 представляет сумму функций, каждая из которых в отдельности зависит от координаты д и, кроме  [c.827]

Якоби-Гамильтона уравнение для главной (фикции 450, 467 Якоби-Пуассон теорема 442 Якоби теорема 310, 563  [c.655]

Теорема Якоби. Если найден полный интеграл уравнения Гамильтона —Якоби, то общее решение уравнений Гамильтона по-  [c.139]

В разработку всей этой теории существенный вклад внес М. В. Остроградский. В исследованиях по уравнениям динамики он дал каноническую форму уравнений динамики и установил теоремы о характеристической функции, принимая связи системы зависящими от времени. В работах этого цикла, независимо от Гамильтона и Якоби, он развивает также и теорию того уравнения в частных производных, которое обычно называется уравнением Гамильтона — Якоби. Независимо от Гамильтона и Якоби Остроградский доказал, что задача определения интегралов канонических уравнений эквивалентна нахождению полного интеграла некоторого дифференциального уравнения в частных производных. Все искомые интегралы канонических уравнений можно найти дифференцированием полного интеграла уравнения в частных производных.  [c.217]

УРАВНЕНИЕ ГАМИЛЬТОНА — ЯКОБИ. ТЕОРЕМА ЯКОБИ 201  [c.201]

Теорема Гамильтона — Якоби [4, 7]. Если задан полный интеграл S(t г/i,. .., у , ai,. .., а ) уравнения Гамильтона— Якоби (38), то общий интеграл канонической системы (1) дается равенствами  [c.201]

Таким путем Якоби пришел к следующей окончательной теореме. Возьмем систему уравнений Гамильтона и рассмотрим уравнение в частных производных  [c.20]


Замечание. Преобразования, не нарушающие гамильтонову форму уравнений, называются каноническими. Теорема 6.4 о канонических преобразованиях указывает путь интегрирования уравнений движения и непосредственно приводит к уравнению Гамильтона -Якоби.  [c.202]

Теорема 6.5. Пусть задана система канонических уравнений Гамильтона (6.53) и пусть У(1, 1,..., а ,..., а ) — некоторый полный интеграл уравнения Гамильтона-Якоби (6.57). Тогда общее решение системы (6.53) можно представить в виде  [c.203]

Теорема Якоби. Если 5 (q, t, t) - полный интеграл уравнения Гамильтона-Якоби, то  [c.337]

Теорема о существовании полного интеграла уравнения Гамильтона-Якоби. Пусть  [c.339]

Замечание 1. Как следует из доказательства последней теоремы, построение полного интеграла уравнения Гамильтона-Якоби опиралось па известные решения уравнений Гамильтона  [c.340]

Теорема Якоби обосновывает следующее правило построения закона движения qi(t), рДО по известному полному интегралу уравнения Гамильтона-Якоби S t,ql,..., q ,al,..., а ). Сначгипа разрешается система п уравнений  [c.646]

В содержание книги включен не только традпционньп материал курсов аналитической механики. Значительное место удел-ено применению к задачам механики методов качественной теории дифференциальных уравнений, на современном уровне трактуются вопросы о ра Дсляемости переменных в уравнении Гамильтона — Якоби, дается рассмотрение эргодических теорем, включая теорему Пуанкаре о возвращении нашл свое место несколько отличное от принятого и приспособленное к задачам динамики изложение теории устойчивости движения, включающее теоремы Ляпунова. В заключительных главах, посвященных ограниченной задаче трех тел и задаче трех тел, автору в небольшом объеме удалось дать хорошее представление о постановках и трудностях этой классической в истории точных наук проблемы.  [c.2]

В содержание книги включен не только традиционный материал курсов аналитической механики. Значительное место уделено применению к задачам механики методов качественной теории дифференциальных уравнений, на современном уровне трактуются вопросы о разделимости переменных в уравнении Гамильтона — Якоби, дается рассмотрение эргодических теорем, включая теорему Пуанкаре о возвращении нашло свое место несколько отличное от принятого и приспособленное к задачам динамики изложение теории устойчивости движения, включающее теоремы Ляпунова. В заключительных главах, посвященных ограниченной задаче трех тел и задаче трех тел, автору в небольшом объеме удалось дать хорошее представление о постановках и трудностях этой классической в истории точных наук проблемы. Книга заканчивается теорией периодических орбит. Использование здесь (и в некоторых других местах) простейших понятий и рассужденир теории множеств не может затруднить внимательного читателя.  [c.10]

Дифференциальное уравнение Гамильтона в частных производных, а также частный случай теоремы Гамильтона Якоби, когда постоянные а и Р имеют смысл начальных значений фазовых координат и р, встречаются в работе Гамильтона [16], 1834 г. В более общем виде, при большом произволе в выборе параметров а и Р, теорема была доказана Якоби в 1837 г. ( relle s Journal, XXVII, стр. 97). См. также Лекции Якоби [17], стр. 157.  [c.286]

Другие доказательства теоремы Якоби. В 25.1 мы привели дока.зательство теоремы Якоби об инвариантности формы уравнений движения по отношению к контактным преобразованиям. Это доказательство основывалось на теореме эквивалентности и, возможно, является простейшим. Тем не менее ввиду важности теоремы Якоби мы приведем еще два доказательства ее, каждое из которых представляет самостоятельный интерес. Одно из них связано с рассмотрением производящих функций контактных преобразований ( 24.2 и 24.3) и включает в себя некоторые приемы, которые окажутся по-пезными впоследствии. Другое доказательство основано на использовании симплектического свойства матрицы М ( 24.13) оно показывает, между прочим, что контактное преобразование не является самым общим преобразованием, при котором уравнения Гамильтона сохраняют свою форму.  [c.513]

Нетрадиционно освещается ряд тем кинематика, общие теоремы динамики, вывод уравнений Лагранжа, уравнение Гамильтона — Якоби. Часть материала выходит за рамки университетского курса элементы теории линейных и квадратичных по скоростям интегралов, применение вариационных принципов, новое доказательство теоремы Дарбу о канонических координатах. В книгу включены задачи, иллюстрирующие и дополняющие теоретический материал, даны методические указания к ним.  [c.2]

Разделение мехапич. систем на голономные и неголо-номные весьма существенно, так как к Г. с. применимы многие сравнительно простые ур-ния механики и общие принципы, к-рые не справедливы для неголопом-ных систем. Движение Г. с. может изучаться с помощью Лагранжа уравнений механики, Гамильтона уравнений, Гамильтона — Якоби уравнения, а также с помощью наименьшего действия принципа В форме Гамильтона — Остроградского или Мопертюи — Лагранжа. К Г, с. приложимы также все те общие теоремы механики и дифференциальные вариационные принципы механики, К-рые справедливы и для неголономных систем.  [c.515]

Первые п уравнений определяют обобщенные координаты г/ как функции t и 2п произвольных постоянных а , Подставляя г/А=г/й( > . п. Pi. > Р ) во вторую группу уравнений (41), находим обобщенные имнульсы как функции t ш 2п произвольных постоянных ttft, Pfe. Якоби разработал и алгоритм решения обратной задачи [7, 165] по известному общел1у решению канонической системы (1) можно построить полный интеграл S t у и. .., Уп, tti,. .., а ) уравнения Гамильтона — Якоби (38). Из теоремы Гамильтона — Якоби вытекает, что асимптотические методы решения канонических систем (1) и уравнения (38) эквивалентны с точки зрения полноты и точности их решения. Поэтому их применение в конкретных задачах в большой степени определяется привычкой и желанием исследователя.  [c.201]


Теорема Якоби. Мы установили, что для построения общего [нтеграла канонических уравнений Гамильтона достаточно найти (олный интеграл уравнения Гамильтона — Якоби. К. Якоби при- адлежит следующая замечательная теорема.  [c.481]

Задача интегрирования системы уравнений (1), как известно, может быть сведена к отысканию полного интеграла некоторого уравнения в частных производных, впервые найденного Гамильтоном. В основе этого метода лежит знаменитая теорема, установленная К. Якоби [I] и М. В. Остроградским [2]. Цель настоящей работы — рассмотрение одного видоизменения данного метода, вытекающего из свойства взаимности или, лучше сказать, свойства переместимости канонических переменных в уравнении Гамильтона — Якоби. Это видоизменение метода, иной раз, ведет к более простой задаче интегрирования системы уравнений (1) и поэтому заслуживает особого рассмотрения.  [c.60]

Проблема точного интегрирования уравнений динамики — одна из самых популярных тем исследования, начиная со знаменитых Математических начал натуральной философии Ньютона. Руководящей идеей в этом круге вопросов является общая идея симметрии. При решении задачи о центральном движении Ньютон уже использовал соображения симметрии факторизуя орбиты группы вращений, он свел эту задачу к изучению движения по прямой в потенциальном поле. Впоследствии Лагранж и Якоби заметили, что классические интегралы задачи многих гравитирующих тел связаны с инвариантностью уравнений движения относительно группы преобразований Галилея. Это фундаментальное наблюдение обобщено Эмми Нётер каждой группе преобразований, сохраняющих действие по Гамильтону, отвечает интеграл уравнений движения. Верно и обратное фазовый поток уравнений Гамильтона, в которых гамильтонианом служит известный интеграл, переводит решения исходных уравнений движения в решения тех же уравнений. На этой идее основано доказательство известной теоремы Лиувилля о полной интегрируемости уравнений Гамильтона фазовые потоки инволютивных интегралов попарно коммутируют и порождают абелеву группу симметрий максимально возможной размерности на многообразиях их совместных уровней.  [c.6]


Смотреть страницы где упоминается термин Уравнение Гамильтона — Якоби. Теорема Якоби : [c.374]    [c.302]    [c.231]    [c.203]   
Смотреть главы в:

Метод усреднения в прикладных задачах  -> Уравнение Гамильтона — Якоби. Теорема Якоби



ПОИСК



Гам??л?.то??а Якоби уравнение теорема

Гам??л?.то??а Якоби уравнение уравнению

Гамильтон

Гамильтона теорема

Гамильтона уравнения

Гамильтона — Якоби

Гамильтона — Якоби теорема

Гамильтона — Якоби уравнени

Гамильтона —Якоби уравнение

Гамильтона-Якоби уравнение уравнения Гамильтона-Якоби

Зэк гамильтоново

Интегрирование дифференциального уравнения Гамильтона — Якоби разделением переменных. Теорема Штеккеля

Канонические преобразования. Уравнение и теорема Остроградского— Гамильтона — Якоби

Канонические уравнения. Теоремы Якоби и Пуассона. Принципы Гамильтона, наименьшего действия и наименьшего принуждения

Первые интегралы гамильтоновых систем Теорема Якоби-Пуассона. Уравнения Уиттекера

Полный интеграл. Теорема Якоби. Метод разделения переменных. Переменные действие-угол. Метод характеристик. Метод Фока. Задача Коши. Классическая механика и квантовая механика. Уравнение Гамильтона-Якоби вр- представлении. Элементы гамильтоновой оптики Каноническая теория возмущений

Разделимость переменных в уравнении Якоби — Гамильтона Теорема Штеккеля

Теорема Якоби

Теорема Якоби об интегрировании дифференциального уравнения Гамильтона в частных производных

Теорема о неприводимости уравнения Гамильтона—Якоби для плоской ограниченной круговой задачи трех тел к уравнению типа Штеккеля

Теорема о существовании полного интеграла уравнения Гамильтона-Якоби

Уравнение Гамильтона-Якоб

Уравнения Якоби

Якоби

Якоби Якоби



© 2025 Mash-xxl.info Реклама на сайте