Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Уравнение Остроградского — Гамильтона — Якоби

Какой вид имеет уравнение Остроградского—Якоби в случае, когда функция Гамильтона явно от времени не зависит  [c.390]

Таким образом, вопрос об интегрировании системы канонических уравнений динамики приведен к интегрированию дифференциального уравнения (11.350) в частных производных первого порядка. Дифференциальное уравнение (11.350) далее будем называть уравнением Остроградского — Гамильтона — Якоби )  [c.356]


Чтобы найти общее решение системы канонических, уравнений динамики, достаточно найти функцию V как полный интеграл дифференциального уравнения с частными производными первого порядка уравнения Остроградского — Гамильтона — Якоби) и продифференцировать этот интеграл по обобщенным координатам и постоянным интегрирования а . Приравнивая частные производные от V по обобщенным координатам обобщенным импульсам р , получим первую группу интегралов канонической системы, а приравнивая постоянным интегрирования производные от V по а , найдем вторую группу интегралов.  [c.358]

Было показано, что при известном законе движения материальной системы можно построить функцию W. Теперь поставим обратную задачу, найдя функцию W без предварительного определения закона движения, найти закон движения материальной системы. Для этого докажем, что главная функция Гамильтона удовлетворяет уравнению (11.350) с частными производными первого порядка, т. е. уравнению Остроградского — Гамильтона — Якоби. Ради краткости это уравнение далее будем называть уравнением Остроградского.  [c.371]

Уравнение Остроградского — Гамильтона — Якоби 356  [c.542]

В 1850 г. Остроградский опубликовал еще один мемуар, содержащий важные результаты по математической теории уравнений движения,— Об интегралах общих уравнений динамики (представлен в 1848 г.). Он показал, что и в более общем случае, когда связи и силовая функция содержат время (этот случай был оставлен в стороне Гамильтоном и Якоби), уравнения движения также могут быть преобразованы в гамильтонову форму.  [c.216]

Одним из важных вопросов механики является задача интегрирования уравнений движения, которые составляют вариационный принцип. Разработка теории интегрирования канонических уравнений принадлежит Гамильтону, К. Якоби и Остроградскому.  [c.216]

В разработку всей этой теории существенный вклад внес М. В. Остроградский. В исследованиях по уравнениям динамики он дал каноническую форму уравнений динамики и установил теоремы о характеристической функции, принимая связи системы зависящими от времени. В работах этого цикла, независимо от Гамильтона и Якоби, он развивает также и теорию того уравнения в частных производных, которое обычно называется уравнением Гамильтона — Якоби. Независимо от Гамильтона и Якоби Остроградский доказал, что задача определения интегралов канонических уравнений эквивалентна нахождению полного интеграла некоторого дифференциального уравнения в частных производных. Все искомые интегралы канонических уравнений можно найти дифференцированием полного интеграла уравнения в частных производных.  [c.217]


Связь, о которой было упомянуто, известна теперь как оптико-механическая аналогия [76]. В явной аналитической форме эта связь отображена в уравнении с частными производными первого порядка, связанном с именами Остроградского, Гамильтона и Якоби.  [c.6]

Запишем уравнение Остроградского — Гамильтона — Якоби для указанных случаев непотенциальных систем  [c.169]

Связь решений уравнения Лиувилля и уравнения Остроградского—Гамильтона—Якоби  [c.170]

Найдем связь между решением уравнения (6.98) и полным интегралом уравнения Остроградского — Г амильтона — Якоби. Полный интеграл уравнения Остроградского — Гамильтона имеет структуру (6.76), т. е. является функцией времени, координат и постоянных интегрирования. Согласно теореме Остроградского— Гамильтона — Якоби, по полному интегралу определя-ём общее решение канонической системы уравнений, зависящее от постоянных т] и  [c.175]

Следовательно, зная полный интеграл уравнения Остроградского— Гамильтона — Якоби, можно найти общее решение уравнения Лиувилля.  [c.176]

Интегралы движения, преобразование Рауса, канонические уравнения Гамильтона, уравнения Якоби— Гамильтона, принцип Гамильтона — Остроградского  [c.372]

Канонические преобразования. Уравнение и теорема Остроградского — Гамильтона — Якоби  [c.352]

На основании теоремы Остроградского — Гамильтона — Якоби найдем общее решение системы канонических уравнений в следующем виде  [c.375]

Так были заложены основы аналитической механики Гамильтона, ставшие в дальнейшем основой динамики Гамильтона — Якоби — Остроградского. Именно Якоби блестяще развил, уточнил и значительно обогатил идеи Гамильтона в области интегрирования дифференциальных уравнений движения.  [c.214]

Наконец, в статье Об интегралах общих уравнений динамики Остроградский показывает, что теория Гамильтона —- Якоби интегрирования уравнений динамики с помощью полного интеграла может быть распространена и на тот круг механических задач, когда связи, наложенные на движение системы, зависят от времени.  [c.22]

Существенные результаты были достигнуты Остроградским, Гамильтоном, Якоби в области методов интегрирования уравнений динамики.  [c.12]

Стремление к унификации формул аналитической механики приводит к идее рассматривать реономные системы как склерономные с п + 1 обобщённой координатой, включив в это число время. Здесь изучается вспомогательная склерономная система, построенная на основе функционала действие по Якоби. Обсуждается обоснование расширенного принципа Гамильтона-Остроградского вспомогательной системы с применением асинхронного варьирования. Получены уравнения движения и условия трансверсальности.  [c.111]

Согласно теореме Остроградского — Гамильтона — Якоби для построения общего решения уравнений движения консервативной системы достаточно найти лишь полный интеграл упомянутого уравнения [40] .  [c.6]

Присоединение временной координаты x к обобщенным координатам X ( =1, 2, 3), частицы существенно изменяет смысл вариационного принципа, из которого вытекают уравнения (2.133), так как теперь время, как и позиционные координаты, варьируется. Иначе говоря, вместо принципа Гамильтона — Остроградского применяется принцип Эйлера — Лагранжа [40]. Все координаты Ц=Ь 2, 3, 4) следует рассматривать как функции параметра 5, который не варьируется. Соответственно этому функция W вытекает из механического действия в форме Эйлера или Якоби и ее нельзя назвать главной функцией Гамильтона. Эта функция зависит от х и поэтому не является характеристической функцией Якоби [40]. Уравнение (2.134) аналогично уравнению Якоби, хотя содержит время как параметр. Чтобы в этом убедиться, заметим, что частные производ-  [c.62]


Если построена обобщенная функция Гамильтона и уравнения движения непотенциальной системы приведены к гамильтоновой форме, то для таких систем справедливы все основные теоремы и методы гамильтоновой механики потенциальных систем, в частности теорема Остроградского — Гамильтона — Якоби об интегрировании канонической системы уравнений. На доказательстве этих утверждений не останавливаемся, поскольку оно проводится так же, как указано, например, в работе [16].  [c.169]

Структурные аналогии ряда тем аналитической механики выступают ярче, если в основу выводов положить формулу первой вариации функционала. На этом пути структурно объединяются такие, казалось бы, разные вопросы, как вариационный принцип Гамильтона—Остроградского, принцип Эйлера—Лагранжа, законы сохранения мер движения в ньютоновской механике - сохранение количества движения, механической энергии и момента количества движения, закон сохранения обобщенного импульса и обобщенный закон сохранения энергии в аналитической механике, интегральные инварианты динамики, уравнения Гамильтона — Якоби и др.  [c.281]

Хотя интегрнрованпе уравнения Остроградского — Якоби (139.1) в общем случае не упрон 1ает решения задачи, тем не менее, как указывалось выше, во многих случаях проще найти полный интеграл уравнения (139.1), а затем и интегралы канонической системы уравнений Гамильтона (132.5).  [c.384]

Выдающиеся результаты в области общих принципов механики получили М. В. Остроградский, В. Гамильтон, К. Гаусс и Г. Герц. Теория интегрирования уравнений динамики была разработана В. Гамильтоном, М. В. Остроградским и К. Якоби, добившихся независимо друг от друга фундаментальных результатов в этой части механики. В общей теории движения систем материальных точек глубокие исследования провел С. А. Чаплыгин. С. А. Чаплыгину принадлежит особая система дифференциальных уравнений движения систем с неголономными связями. Теория движения систем с неголопомнымн связями является одним из сравнительно новых разделов теоретической механики. Эта теория непосредственно связана с современными исследованиями свойств так называемых неголопомиых пространств, обобщающих в известном смысле пространства Лобачевского и Ри.мапа.  [c.38]

Очерком общих методов интегрирования уравнений динамики заканчивается вторая часть этой книги, содержащая, вместе с ГЛ. I первой части, краткое рассмотрение основ аналитической механики. Оставлен в стороне ряд вопросов, как, например, распространение метода Остроградского — Гамильтона — Якоби на системы с избыточными координатами ) на случай неголоном-ных систем ), колебания с малыми и конечными амплитудами систем при наличии неголономиых связей и т. д.  [c.396]

Итак, основные этапы развития аналитической динамики таковы первым шагом явилось установление лагранжевой формы уравнений движения, затем лагранжев метод вариации произвольных постоянных и аналогичная теория Пуассона и связанные с нею проблемы интегрирования затем Гамильтон представил интегральные уравнения посредством единственной характеристической функции, определяемой а posteriori посредством интегральных уравнений, предполагаемых известными, или из того условия, что она должна одновременно удовлетворять двум дифференциальным уравнениям в частных производных Гамильтон же нашел новую форму уравнений движения Якоби свел интегрирование дифференциальных уравнений динамики к нахождению полного интеграла единственного дифференциального уравнения в частных производных он же развил теорию последнего множителя системы дифференциальных уравнений движения Остроградский рассмотрел проблему интегрирования уравнений динамики Раус нашел новую форму дифференциальных уравнений движений Пуанкаре развил теорию интегральных инвариантов наконец,  [c.848]

Уравнения такого вида впервые применялись в работах Лагранжа и Пуассона по небесной механике. Трактовка их как общей формы уравнений движения механических систем под действием потенциальных сил была дана позднее Гамильтоном (для систем свободных точек), Якоби (для систем со стационарными связями), Остроградским и Донкином (для систем с нестационарными, вообще говоря, связями). Для нас основой такой трактовки послужит  [c.129]

Разделение мехапич. систем на голономные и неголо-номные весьма существенно, так как к Г. с. применимы многие сравнительно простые ур-ния механики и общие принципы, к-рые не справедливы для неголопом-ных систем. Движение Г. с. может изучаться с помощью Лагранжа уравнений механики, Гамильтона уравнений, Гамильтона — Якоби уравнения, а также с помощью наименьшего действия принципа В форме Гамильтона — Остроградского или Мопертюи — Лагранжа. К Г, с. приложимы также все те общие теоремы механики и дифференциальные вариационные принципы механики, К-рые справедливы и для неголономных систем.  [c.515]


Заметим, что в XX в. получила дальнейшее развитие теория интегрирования уравнения Гамильтона — Остроградского — Якоби методом разделения переменных. Т. Леви-Чивита установил критерий возможной классификации соответствующих динамических задач с любым числом степеней свободы. Найденные им общие условия, которым должна удовлетворять функция Гамильтона для того, чтобы уравнение Гамильтона — Остроградского — Якоби интегрировалось в квадратурах методом разделения переменных, легли в основу позднейших исследований. Ф. Далль-Аква составил классификацию указанного характера для систем с тремя степенями свободы.  [c.103]

Задача интегрирования системы уравнений (1), как известно, может быть сведена к отысканию полного интеграла некоторого уравнения в частных производных, впервые найденного Гамильтоном. В основе этого метода лежит знаменитая теорема, установленная К. Якоби [I] и М. В. Остроградским [2]. Цель настоящей работы — рассмотрение одного видоизменения данного метода, вытекающего из свойства взаимности или, лучше сказать, свойства переместимости канонических переменных в уравнении Гамильтона — Якоби. Это видоизменение метода, иной раз, ведет к более простой задаче интегрирования системы уравнений (1) и поэтому заслуживает особого рассмотрения.  [c.60]


Смотреть страницы где упоминается термин Уравнение Остроградского — Гамильтона — Якоби : [c.392]    [c.224]    [c.7]    [c.571]    [c.483]    [c.318]    [c.713]    [c.356]   
Курс теоретической механики. Т.2 (1977) -- [ c.356 ]



ПОИСК



Гам??л?.то??а Якоби уравнение уравнению

Гамильтон

Гамильтона уравнения

Гамильтона — Якоби

Гамильтона — Якоби уравнени

Гамильтона —Якоби уравнение

Гамильтона-Якоби уравнение уравнения Гамильтона-Якоби

Зэк гамильтоново

Интегралы движения, преобразование Рауса, канонические уравнения Гамильтона, уравнения Якоби — Гамильтона, принцип Гамильтона — Остроградского

Канонические преобразования. Уравнение и теорема Остроградского— Гамильтона — Якоби

Остроградский

Остроградского уравнение

Уравнение Гамильтона-Якоб

Уравнение Остроградского — Гамильтон

Уравнение Остроградского — Гамильтона — Якоби преобразование Крылова

Уравнение Остроградского — Гамильтона — Якоби частот (характеристическое)

Уравнение Остроградского—Якоби

Уравнения Якоби

Якоби

Якоби Якоби



© 2025 Mash-xxl.info Реклама на сайте