Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Гамильтона — Якоби уравнени

В 1850 г. Остроградский опубликовал еще один мемуар, содержащий важные результаты по математической теории уравнений движения,— Об интегралах общих уравнений динамики (представлен в 1848 г.). Он показал, что и в более общем случае, когда связи и силовая функция содержат время (этот случай был оставлен в стороне Гамильтоном и Якоби), уравнения движения также могут быть преобразованы в гамильтонову форму.  [c.216]

Канонические преобразования могут быть использованы для того, чтобы упростить систему уравнений Гамильтона, сделать ее более удобной для интегрирования. Далее канонические преобразования будут использованы для того, чтобы получить из уравнений Гамильтона иную форму уравнений движения — уравнение в частных производных Гамильтона — Якоби.  [c.312]


Гамильтона —Якоби уравнение 323  [c.365]

Переход от системы уравнений второго порядка к системе уравнений первого порядка можно осуществлять разными способами, и в результате будут получаться, вообще говоря, различные эквивалентные системы. Среди них особенно простую и симметричную структуру имеет система канонических уравнений Гамильтона. Свойства этих уравнений лежат в основе метода Гамильтона-Якоби исследования движений механических систем, а также современной теории возмущений. Канонические уравнения получаются с помощью преобразования Лежандра.  [c.626]

Гамильтона — Якоби уравнение  [c.298]

Роль дифференциального уравнения в частных производных в теориях Гамильтона и Якоби. В предыдущей главе (гл. VII, п. 9) отмечалось, что впервые в аналитической механике фундаментальное уравнение в частных производных открыл Гамильтон. Он также первый выдвинул идею о фундаментальной функции, из которой можно было бы получить при помощи простых дифференцирований и исключения переменных все механические траектории. Однако первоначальная схема Гамильтона была практически неприменима. Более того, главная функция Гамильтона удовлетворяла двум уравнениям в частных производных. Второе уравнение с точки зрения теории интегрирования является ненужным усложнением. С другой стороны, в теории Якоби требуется найти лишь один полный интеграл основного дифференциального уравнения. В случае систем с разделяющимися переменными такой интеграл может быть найден. Поэтому при поверхностном подходе создается впечатление, что Якоби освободил теорию Гамильтона от ненужного усложнения, приведя ее к схеме, применимой на практике,  [c.291]

Поэтому, если нам дана какая-либо совместная система, то рекомендуется поставить вопрос, нельзя ли ее привести к каноническому виду. Известно, что Гамильтон привел дифференциальные уравнения механики для щирокого ряда случаев к этому виду. Якоби обратил внимание на важность этого приведения и одновременно показал, что существует более общая категория задач механики, которые можно облечь в данную форму.  [c.416]

Открытие Гамильтона, согласно которому интегрирование дифференциальных уравнений динамики стоит в связи с интегрированием некоторого уравнения в частных производных первого порядка, основывалось на выводе результатов геометрической оптики, известных в корпускулярной теории, с точки зрения волновой теории, что имело большое значение в развитии физики своего времени. Теория Гамильтона интегрирования дифференциальных уравнений динамики есть прежде всего не что иное, как всеобщая аналитическая формулировка хорощо известного в физической форме соотнощения между световым лучом и световой волной. В силу изложенного здесь исходного положения делается понятной и та ненужно частная форма, в которой Гамильтон опубликовал свою теорию и из которой исходил Якоби. Гамильтон первоначально исходил в своих исследованиях систем лучей из практических запросов оптического приборостроения. В силу этого он рассматривал только такие световые волны, которые выходят из отдельных точек. Обобщение Якоби, вытекавшее отсюда, состояло в том, что для определения луча должны точно так же применяться и другие произвольные световые волны. Как известно, в оптике посредством так называемого принципа Гюйгенса из специальных волн строят общие  [c.513]


Полный интеграл Якоби уравнения Гамильтона — Якоби. Предположим, что мы отыскиваем все лучи или траектории и соотнесенные им векторы импульса — энергии для динамической системы с уравнением энергии  [c.250]

Векторный анализ, включающий теорию винтов. Кинематика. Динамика частицы и твердого тела. Уравнения Лагранжа и Гамильтона. Вариационные принципы. Уравнение Гамильтона — Якоби. Скобки Пуассона. Теория относительности.  [c.439]

ОНТИ, Москва, 1937.— Уравнения Лагранжа и Гамильтона, теория преобразований, уравнение Гамильтона — Якоби, переменные действие—угол, устойчивость, движения твердого тела, возмущения.  [c.440]

Подробное изложение принципа Даламбера, уравнений Лагранжа, вариационных принципов, вариации произвольных постоянных, оптики Гамильтона, характеристической функции, уравнений Гамильтона — Якоби, разделения переменных, интегральных инвариантов, систематическое интегрирование систем канонических уравнений, канонические преобразования, подстановки или производящие функции, эквивалентные системы.  [c.442]

Здесь S (г) — классич. действие, подчиняющееся Гамильтона — Якоби уравнению  [c.254]

Одним из важных вопросов механики является задача интегрирования уравнений движения, которые составляют вариационный принцип. Разработка теории интегрирования канонических уравнений принадлежит Гамильтону, К. Якоби и Остроградскому.  [c.216]

В разработку всей этой теории существенный вклад внес М. В. Остроградский. В исследованиях по уравнениям динамики он дал каноническую форму уравнений динамики и установил теоремы о характеристической функции, принимая связи системы зависящими от времени. В работах этого цикла, независимо от Гамильтона и Якоби, он развивает также и теорию того уравнения в частных производных, которое обычно называется уравнением Гамильтона — Якоби. Независимо от Гамильтона и Якоби Остроградский доказал, что задача определения интегралов канонических уравнений эквивалентна нахождению полного интеграла некоторого дифференциального уравнения в частных производных. Все искомые интегралы канонических уравнений можно найти дифференцированием полного интеграла уравнения в частных производных.  [c.217]

Лагранж в Аналитической механике рассматривает именно эту узкую форму принципа наименьшего действия. Однако указание на более широкую форму принципа содержится в его ранней работе где в 13 прямо указывается на то, что полученное Лагранжем в 8 этой статьи соотношение, тождественное с уравнением для изоэнергетической вариации, применимо в случае произвольных сил. Большинство ученых, разрабатывавших этот вопрос после Лагранжа, взяли у него как раз узкую форму принципа (в том числе Гамильтон и Якоби). Лишь Гельмгольц рассмотрел расширенную форму принципа. Однако Гельмгольц не счел нужным проводить отчетливое различие между принципом наименьшего действия в расширенной форме и принципом Гамильтона. Он основывался при этом на том безусловно верном положении, что оба эти принципа эквивалентны уравнению Даламбера и в силу этого являются следствиями друг друга. Тем не менее это не дает права отождествлять их, так как варьирование, применяемое в каждом из этих принципов, производится совершенно различными способами. Оба эти принципа получаются из соотношений при различных специализациях общего способа варьирования.  [c.221]

В трех лекциях (XIX, XX, XXI) Якоби вносит существенные усовершенствования в метод интегрирования канонических уравнений, основанный Гамильтоном на рассмотрении уравнений в частных производных.  [c.19]

Таким путем Якоби пришел к следующей окончательной теореме. Возьмем систему уравнений Гамильтона и рассмотрим уравнение в частных производных  [c.20]

Метод Гамильтона для интегрирования уравнений механики позволяет в ряде случаев получить ценные результаты в теории трансцендентных функций, устанавливая для определенного класса таких функций ряд алгебраических зависимостей. На такую, возможность указал Якоби в тридцатой лекции своего курса.  [c.21]

Принципы не всегда вносят новое физическое содержание в механику или упрощают практическое решение механических задач. Тем не менее они в ряде случаев более удобны для общего анализа движения механических систем. Так, интегральные принципы Гамильтона и Якоби позволили построить такой метод интегрирования уравнений динамики, благодаря которому было решено много задач, представлявшихся до того неразрешимыми.  [c.501]

Рассмотрим отдельно случай автономного гамильтониана, для которого уравнение Гамильтона-Якоби имеет вид  [c.300]

Гамильтона-Якоби уравнения 328 — прямая 53  [c.473]

Гамильтона функция 135 Гамильтона — Якоби уравнение. См.  [c.652]

Метод Якоби — Гамильтона интегрирования канонических уравнений Гамильтона  [c.226]

Связь, о которой было упомянуто, известна теперь как оптико-механическая аналогия [76]. В явной аналитической форме эта связь отображена в уравнении с частными производными первого порядка, связанном с именами Остроградского, Гамильтона и Якоби.  [c.6]

Рассеяние классических частиц в поле центральных сил или друг на друге описывается посредством представления о траекториях движения частиц. Траектория наиболее просто получается из гамильтониана с помощью уравнения Гамильтона — Якоби.  [c.123]


В книге дано систематическ(1е и достаточно доступное изложение O HOD аналитической механики В нее включены разделы уравнения Лагранжа, уравнения Гамильтона, теория Якоби, неголономные системы, вариационные принципы и теория возмущений. Приводятся многочисленные примеры, иллюстрирующие применение рассматриваемых методов.  [c.2]

В литературе дифференциальное уравнение (7.9.22) часто называют дифференциальным уравнением в частных производных Гамильтона — Якоби . Это название совершенно справедливо. Несмотря на фундаментальную важность функции расстояния Гамильтона, его первоначальная схема была неприемлема для целей практического интегрирования. Замечательное открытие Гамильтона дало Якоби ключ к каноническим преобразованиям, что в свою очередь расширило рамки применимости метода самого Гамильтона. С помощью функции Якоби S, на которую наложено гораздо меньше условий, можно найти и гамильтонову lF-функцию. Но было бы практически невозможно найти U -фyнкцию непосредственно путем решения двух совместных уравнений в частных производных. Связь между этими двумя теориями будет обсуждаться более подробно в следующей главе.  [c.263]

После того как дифференциальные уравнения движения написаны на основании вариационного принципа Гамильтона, возникает вопрос об их фактической интеграции. Для этой цели Гамильтоном и Якоби систематически развита специальная теория. Эта теория имела особое значение для небесной механики и для классической теории атома Бора—Зоммерфельда. Построение этой теории заключает в себе три последовательных этапа. Прежде всего необходимо найти возможно более простую форму дифференциальных уравнений движения. Эта форма была найдена в канонических уравнениях Галгильтона. Затем надо установить общие законы таких преобразований этих дифференциальных уравнений, при которых они сохраняли бы свою форму. Такими законами оказались канонические преобразования и теория важнейших их инвариантов. Наконец, надо развить собственно теорию интегрирования систем канонических уравнений. Решение этой задачи привело к установлению и интегрированию уравнения в частных производных Гамильтона—Якоби.  [c.827]

Итак, основные этапы развития аналитической динамики таковы первым шагом явилось установление лагранжевой формы уравнений движения, затем лагранжев метод вариации произвольных постоянных и аналогичная теория Пуассона и связанные с нею проблемы интегрирования затем Гамильтон представил интегральные уравнения посредством единственной характеристической функции, определяемой а posteriori посредством интегральных уравнений, предполагаемых известными, или из того условия, что она должна одновременно удовлетворять двум дифференциальным уравнениям в частных производных Гамильтон же нашел новую форму уравнений движения Якоби свел интегрирование дифференциальных уравнений динамики к нахождению полного интеграла единственного дифференциального уравнения в частных производных он же развил теорию последнего множителя системы дифференциальных уравнений движения Остроградский рассмотрел проблему интегрирования уравнений динамики Раус нашел новую форму дифференциальных уравнений движений Пуанкаре развил теорию интегральных инвариантов наконец,  [c.848]

Разделение мехапич. систем на голономные и неголо-номные весьма существенно, так как к Г. с. применимы многие сравнительно простые ур-ния механики и общие принципы, к-рые не справедливы для неголопом-ных систем. Движение Г. с. может изучаться с помощью Лагранжа уравнений механики, Гамильтона уравнений, Гамильтона — Якоби уравнения, а также с помощью наименьшего действия принципа В форме Гамильтона — Остроградского или Мопертюи — Лагранжа. К Г, с. приложимы также все те общие теоремы механики и дифференциальные вариационные принципы механики, К-рые справедливы и для неголономных систем.  [c.515]

Описание движения С. с с. п. обычно основывается на ур-ниях, связывающих обобщённые координаты и обобщённые импульсы (в т. ч. поля, токи, напряжения) входящих Ь неё объектов. Порядок этих ур-ний определяется числом степеней свободы С, с с. и. Так, плоское движение маятника а иоле тяжести или изменения тока в Г, С, Д-контуре описывается дифференц. ур-ниями 2-го порядка и соответствует С. с с. п. с одной степенью свободы. Ур-ния движения консервативных (сохраняющих энергию) С. с с, п. могут быть получены из вари-ац. принципа (см. Наименьшего действия принцип). При этом различаются три оси. типа эквивалевтных описаний движения С. с с. п. через Лагранжа ф-цию, содержащую обобщённые координаты и скорости, через Гамильтона ф-цию, содержащую обобщённые импульсы и координаты, и через ф-цию действия (см, Гамильтона — Якоби уравнение), выраженную через обобщённые координаты и их производные. В первых двух случаях в ур-ния входят полные производные по времени, в последнем случав — частные производные.  [c.535]

Заметим, что в XX в. получила дальнейшее развитие теория интегрирования уравнения Гамильтона — Остроградского — Якоби методом разделения переменных. Т. Леви-Чивита установил критерий возможной классификации соответствующих динамических задач с любым числом степеней свободы. Найденные им общие условия, которым должна удовлетворять функция Гамильтона для того, чтобы уравнение Гамильтона — Остроградского — Якоби интегрировалось в квадратурах методом разделения переменных, легли в основу позднейших исследований. Ф. Далль-Аква составил классификацию указанного характера для систем с тремя степенями свободы.  [c.103]

Полученное условие представляет собой первый интеграл канонг ческих уравнений Гамильтона, известный как интегра. Якоби. Он существует при тех же предположениях, что и ин теграл Якоби уравнений Лагранжа второго рода.  [c.454]

Проблема точного интегрирования уравнений динамики — одна из самых популярных тем исследования, начиная со знаменитых Математических начал натуральной философии Ньютона. Руководящей идеей в этом круге вопросов является общая идея симметрии. При решении задачи о центральном движении Ньютон уже использовал соображения симметрии факторизуя орбиты группы вращений, он свел эту задачу к изучению движения по прямой в потенциальном поле. Впоследствии Лагранж и Якоби заметили, что классические интегралы задачи многих гравитирующих тел связаны с инвариантностью уравнений движения относительно группы преобразований Галилея. Это фундаментальное наблюдение обобщено Эмми Нётер каждой группе преобразований, сохраняющих действие по Гамильтону, отвечает интеграл уравнений движения. Верно и обратное фазовый поток уравнений Гамильтона, в которых гамильтонианом служит известный интеграл, переводит решения исходных уравнений движения в решения тех же уравнений. На этой идее основано доказательство известной теоремы Лиувилля о полной интегрируемости уравнений Гамильтона фазовые потоки инволютивных интегралов попарно коммутируют и порождают абелеву группу симметрий максимально возможной размерности на многообразиях их совместных уровней.  [c.6]

М. тесно связана со многими др. разделами физики. Ряд понятий и методов М. при соотвотствукщих обобщениях находит приложение в оптике, статистич. физике, квантовой М., электродинамике, теории относительности и др. (см., напр., Действие, Канонические уравнения механики, Лагранжа функци.ч, Лагранжа уравнения механики, Гамильтона — Якоби уравнения, Наименьшего действия принцип). Кроме того, при решении ряда задач газовой динамики, теории взрыва, теплообмена в движущихся жидкостях и газах, динамики сильно разреженной среды (см. Супераэродинамика), магнитной гидродинамики и т. д. одновременно используются методы и ур-ния как теоретич. М., так и соответственно термодинамики, молекулярной физики, теории электричества и др.  [c.210]


ОИТИКО-МЕХАНИЧЕСКАЯ АНАЛОГИЯ — аналогия между классич. механикой и геометрич. оптикой, установленная В. Гамильтоном (W. namilton) в 1834. Движение частицы энергни Е и массы т в постоянном потенциьшьном поле V (х, у, z) по классич. механике онисывается Гамильтона—Якоби уравнением. yS,)- = 2m E—V),  [c.507]

В этой главе преобладает координатная точка зрения. Развитый Гамильтоном и Якоби аппарат производящих функций канонических преобразований является самым мощным из имеющихся методов интегрирования дифференциальных уравнений динамики. Кроме этого аппарата, глава содержит нечетномерный подход к гамильтоновым фазовым потокам.  [c.205]


Смотреть страницы где упоминается термин Гамильтона — Якоби уравнени : [c.329]    [c.505]    [c.20]    [c.392]    [c.399]    [c.576]    [c.224]    [c.48]   
Лекции по аналитической механике (1966) -- [ c.155 ]



ПОИСК



Вывод уравнения Гамильтона — Якоби

Вывод уравнения Гамильтона—Якоби на основе формулы полной вариации действия

Гам??л?.то??а Якоби уравнение уравнению

Гамильтон

Гамильтона уравнения

Гамильтона — Якоби

Гамильтона — Якоби метод уравнения

Гамильтона — Якоби уравнение релятивистское

Гамильтона — Якоби уравнение укороченное

Гамильтона — Якоби уравнение частных производных

Гамильтона —Якоби уравнение

Гамильтона —Якоби уравнение

Гамильтона —Якоби уравнение полный интеграл его

Гамильтона-Якоби уравнение уравнения Гамильтона-Якоби

Гамильтона-Якоби уравнение уравнения Гамильтона-Якоби

Гамильтонова двухточечная характеристическая или главная функция. Уравнение Гамильтона — Якоби

Гуляев. О переместимости канонических переменных в уравнении Гамильтона — Якоби

ДИФФЕРЕНЦИАЛЬНОЕ УРАВНЕНИЕ В ЧАСТНЫХ ПРОИЗВОДНЫХ ГАМИЛЬТОНА—ЯКОБИ Важная роль производящей функции в задаче о движении

Двухточечная характеристическая функция в пространстве событий и уравнение Гамильтона — Якоби

Дифференциальное уравнение Гамильтона — Якоби

Дифференциальное уравнение Якоби-Гамильтона для главной функции в частных производных

Зэк гамильтоново

Интегралы движения, преобразование Рауса, канонические уравнения Гамильтона, уравнения Якоби — Гамильтона, принцип Гамильтона — Остроградского

Интегрирование дифференциального уравнения Гамильтона — Якоби разделением переменных. Теорема Штеккеля

Интегрирование уравнений Гамильтона — Якоби посредством разделения переменных

Интегрирование уравнения Гамильтона — Якоби

Интегрирование уравнения Гамильтона—Якоби для задачи двух тел

Канонические преобразования. Уравнение Гамильтона Якоби Канонические преобразования определение, основной критерий

Канонические преобразования. Уравнение и теорема Остроградского— Гамильтона — Якоби

Канонические уравнения. Теоремы Якоби и Пуассона. Принципы Гамильтона, наименьшего действия и наименьшего принуждения

Метод Якоби — Гамильтона интегрирования канонических уравнений Гамильтона

Метод вариации канонических постоянных Производящие функции канонических преобразований Линейные канонические преобразования. Диагонализация гамильтониана. Операторная форма канонических преобразований. Канонические преобразования в классической теории магнитного резонанса Уравнение Гамильтона-Якоби

Отыскание полного интеграла уравнения Гамильтона—Якоби методом разделения переменных

Первая каноническая форма уравнений относительного движеВторая каноническая форма уравнений относительного движеТретья каноническая форма уравнений относительного движе Уравнение Гамильтона — Якоби. Метод Гамильтона — Якоби

Первые интегралы гамильтоновых систем Теорема Якоби-Пуассона. Уравнения Уиттекера

Поиск решений уравнения Гамильтона — Якоби на ЭВМ. Приложение к ограниченной задаче трех тел

Полный интеграл Якоби уравнения Гамильтона — Якоби

Полный интеграл. Теорема Якоби. Метод разделения переменных. Переменные действие-угол. Метод характеристик. Метод Фока. Задача Коши. Классическая механика и квантовая механика. Уравнение Гамильтона-Якоби вр- представлении. Элементы гамильтоновой оптики Каноническая теория возмущений

Преобразование естественной конгруэнции к прямым линиям с помощью решения уравнения Гамильтона — Якоби

Преобразование координат в уравнениях Гамильтона Правила Якоби, Донкина, Матье

Применение метода усреднения к уравнению Гамильтона — Якоби

Разделение переменных в уравнении Гамильтона — Якоби

Разделимость переменных в уравнении Якоби — Гамильтона Теорема Штеккеля

Релятивистское уравнение Гамильтона — Якоб

Решение уравнения Гамильтона—Якоби.Примеры

Роль дифференциального уравнения в частных произвол ных в теориях Гамильтона и Якоби

Случаи интегрируемости уравнения Гамильтона — Якоби методом разделения переменных

Тема 18. Уравнение Гамильтона—Якоби

Теорема Якоби об интегрировании дифференциального уравнения Гамильтона в частных производных

Теорема о неприводимости уравнения Гамильтона—Якоби для плоской ограниченной круговой задачи трех тел к уравнению типа Штеккеля

Теорема о существовании полного интеграла уравнения Гамильтона-Якоби

Уравнение Гамильтона Якоби и оптико-механическая аналогия

Уравнение Гамильтона — Якоби в импульсном представлении

Уравнение Гамильтона — Якоби для консервативных и обобщенно консервативных систем

Уравнение Гамильтона — Якоби матричной форме

Уравнение Гамильтона — Якоби нерегулярное решение

Уравнение Гамильтона — Якоби регулярное решение

Уравнение Гамильтона — Якоби случай интегрируемости

Уравнение Гамильтона — Якоби. Теорема Якоби

Уравнение Гамильтона-Якоб

Уравнение Гамильтона-Якоб

Уравнение Гамильтона-Якоби в обобщенных координатах

Уравнение Гамильтона-Якоби в теории импульсивных

Уравнение Гамильтона-Якоби движений

Уравнение Гамильтона-Якоби для консервативных и обобщенно консервативных систе

Уравнение Гамильтона-Якоби для систем с циклическими

Уравнение Гамильтона-Якоби координатами

Уравнение Гамильтона-Якоби обобщенное

Уравнение Гамильтона—Якоби в декартовых, цилиндриче¦ ских и сферических координатах

Уравнение Гамильтона—Якоби в неинерциальной систем

Уравнение Гамильтона—Якоби в эллипсоидальных переменПонижение порядка системы уравнений плоской ограниченной круговой задачи трех тел

Уравнение Гамильтона—Якоби для угловой скорости

Уравнение Гамильтона—Якоби калорическое

Уравнение Гамильтона—Якоби относительно Земли

Уравнение Гамильтона—Якоби термическое

Уравнение Гамильтона—Якоби центра масс

Уравнение Гамильтона—Якоби энтропии

Уравнение Остроградского — Гамильтона — Якоби

Уравнение Остроградского — Гамильтона — Якоби преобразование Крылова

Уравнение Остроградского — Гамильтона — Якоби частот (характеристическое)

Уравнения Гамильтона — Якоби для систем с циклическими координатами

Уравнения Якоби

Характеристики уравнения Гамильтона — Якоби

Частные случаи уравнения Гамильтона — Якоби

Частный интеграл уравнений Гамильтона Якоби уравнения второго порядк

Частный интеграл уравнений Гамильтона — Якоби, вывод инвариантных

Частный интеграл уравнений Гамильтона — Якоби, вывод инвариантных соотношений

Якоби

Якоби Якоби

Якоби-Гамильтона уравнение для главной функции



© 2025 Mash-xxl.info Реклама на сайте