Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Теорема Гамильтона—Якоби движения

Замечания по теореме Гамильтона — Якоби. Эта изящная теорема, доказанная в 16.2 и 16.4, имеет фундаментальное значение как для теории, так и для приложений. До сих пор, исследуя динамическую систему какого-либо частного вида, мы составляли уравнения движения, после чего задача сводилась к интегрированию этих уравнений. Совершенно иначе обстоит дело в методе Гамильтона — Якоби. Как только найден один полный интеграл уравнения Гамильтона в частных производных, сразу могут быть написаны интегралы уравнений движения. Вопрос заключается лишь в том, насколько просто может быть найден полный интеграл. Однако, как будет показано, для большей части задач классической механики нахождение полного интеграла не вызывает каких-либо затруднений.  [c.290]


Вариация элементов траектории. Предположим, что нам удалось с помощью теоремы Гамильтона — Якоби найти решение уравнений движения системы с функцией Гамильтона Н. Рассмотрим теперь другую задачу, когда функция Гамильтона равна Н - - К. Решение этой новой задачи получается, как мы покажем, путем интегрирования уравнений движения гамильтоновой системы чрезвычайно простого вида.  [c.506]

По сложившейся традиции в курсы аналитической механики включают общие уравнения движения голономных и неголономных систем, вариационные принципы, теорию канонических преобразований, канонические уравнения с теорией интегрирования их (теорема Гамильтона — Якоби), интегральные инварианты, теорию последнего множителя и т. П. основные законы механики считаются известными и не подвергаются обсуждению.  [c.9]

Теперь мы можем сформулировать доказанную теорему. Теорема Якоби. Если S(t, qi, а.-) — некоторый полный интеграл уравнения Гамильтона — Якоби (6), то конечные уравнения движения голономной системы с данной функцией Н могут быть записаны в виде )  [c.156]

Замечание. Преобразования, не нарушающие гамильтонову форму уравнений, называются каноническими. Теорема 6.4 о канонических преобразованиях указывает путь интегрирования уравнений движения и непосредственно приводит к уравнению Гамильтона -Якоби.  [c.202]

Задачи построения полного интеграла уравнения Гамильтона — Якоби и общего интеграла канонической системы, как доказывается в теории дифференциальных уравнений, математически эквивалентны. Степень трудности их, вообще говоря, одинакова. Однако может быть отмечен ряд частных случаев, когда уравнение Гамильтона — Якоби может оказаться более податливым, чем каноническая система. Об этом говорится в п. 10.14. Более важно то обстоятельство, что решение (10), получаемое с помощью теоремы Якоби, является каноническим преобразованием, а это, как мы увидим в главе 11, значительно упрощает форму уравнений возмущенного движения.  [c.537]

Основываясь на теореме Якоби, можно применять следующий метод решения задач о движении механических систем с обобщенно-потенциальными силами и голономными идеальными связями. Этот метод заключается в составлении уравнения Гамильтона — Якоби по известной функции Гамильтона и в отыскании полного интеграла этого уравнения с последующим использованием соотношений (9.75).  [c.405]


Согласно теореме Остроградского — Гамильтона — Якоби для построения общего решения уравнений движения консервативной системы достаточно найти лишь полный интеграл упомянутого уравнения [40] .  [c.6]

Если построена обобщенная функция Гамильтона и уравнения движения непотенциальной системы приведены к гамильтоновой форме, то для таких систем справедливы все основные теоремы и методы гамильтоновой механики потенциальных систем, в частности теорема Остроградского — Гамильтона — Якоби об интегрировании канонической системы уравнений. На доказательстве этих утверждений не останавливаемся, поскольку оно проводится так же, как указано, например, в работе [16].  [c.169]

Итак, с помощью любого полного интеграла дифференциального уравнения Гамильтона в частных производных можно получить полное решение задачи Гамильтона, т. е. интегралы гамильтоновых уравнений движения. Дифференциальное уравнение для функции S впервые было получено Гамильтоном в 1834 г., а доказательство всей теоремы было дано Якоби в 1837 г. ).  [c.286]

Рассмотрим теперь задачу, когда функция Гамильтона равна Н К, и составим уравнения движения в новых переменных (а Р). По теореме Якоби ( 25.1) новые уравнения движения будут иметь вид  [c.507]

Эта теорема аналогична принципу наименьшего действия, но отличается от него, так как последний не зависит от рассмотрения времени. В классической механике принцип Гамильтона выражает свойство движения, зависящее от времени, а принцип наименьшего действия (особенно отчетливо это видно в форме, приданной ему Якоби) — свойство, не зависящее от времени. В случае, когда Z7 = О, имеем Г = Л, и из принципа наименьшего действия получаем  [c.868]

Контактные преобразования встречаются и во многих других случаях. Движение динамической системы определяет контактное преобразование (goJ Ро) в Р)- Кроме того, если мы будем фиксировать траекторию в фазовом пространстве с помощью параметров (а Р), связанных с q -, рд) соотношениями р,. da. = dq g, то преобразование от (а Р) к (q р) будет контактным ( 24.1). В самом деле, подобное контактное преобразование мы получаем всякий раз, когда решаем задачу динамики с помощью теоремы Гамильтона — Якоби ( 25.2). Можно, наконец, определить контактное преобразование с помощью производящей функции ( 24.3) в дальнейшем, при исследовании задачи трех тел (гл. XXIX), мы приведем много примеров контактных преобразований.  [c.503]

Однако, если для голономных систем теорема Гамильтона — Якоби в неголономных координатах доказывается совершенно гладко, то в применении к системам с неголономными связями встречается затруднение, состоящее в том, что в канонических уравнениях движения в неголономных координатах число членов с коэффициентами Риччи — Гамеля уменьшается. Вследствие такой неполноты доказательство теоремы Гамильтона непосредственно не проходит. Мы попытались обойти данное затруднение, применяя все исследование к системам типа Чаплыгина с циклическими координатами для независимости же результатов от порядка преобразований, о чем говорилось выше, кинетическая энергия пересчитывалась в нормальных координатах. При всех перечисленных условиях теорема Гамильтона — Якоби доказывается. Однако следует помнить, что даже классическая теорема Гамильтона — Якоби в голономных координатах для голономных же систем далеко не всегда приводит к решению задачи о нахождении всех интегралов уравнений движения, в силу затруднительности интегрирования самого уравнения в частных производных Г амильто а — Якоби.  [c.8]

Теорема Якоби обосновывает следующее правило построения закона движения qi(t), рДО по известному полному интегралу уравнения Гамильтона-Якоби S t,ql,..., q ,al,..., а ). Сначгипа разрешается система п уравнений  [c.646]


В содержание книги включен не только традпционньп материал курсов аналитической механики. Значительное место удел-ено применению к задачам механики методов качественной теории дифференциальных уравнений, на современном уровне трактуются вопросы о ра Дсляемости переменных в уравнении Гамильтона — Якоби, дается рассмотрение эргодических теорем, включая теорему Пуанкаре о возвращении нашл свое место несколько отличное от принятого и приспособленное к задачам динамики изложение теории устойчивости движения, включающее теоремы Ляпунова. В заключительных главах, посвященных ограниченной задаче трех тел и задаче трех тел, автору в небольшом объеме удалось дать хорошее представление о постановках и трудностях этой классической в истории точных наук проблемы.  [c.2]

В содержание книги включен не только традиционный материал курсов аналитической механики. Значительное место уделено применению к задачам механики методов качественной теории дифференциальных уравнений, на современном уровне трактуются вопросы о разделимости переменных в уравнении Гамильтона — Якоби, дается рассмотрение эргодических теорем, включая теорему Пуанкаре о возвращении нашло свое место несколько отличное от принятого и приспособленное к задачам динамики изложение теории устойчивости движения, включающее теоремы Ляпунова. В заключительных главах, посвященных ограниченной задаче трех тел и задаче трех тел, автору в небольшом объеме удалось дать хорошее представление о постановках и трудностях этой классической в истории точных наук проблемы. Книга заканчивается теорией периодических орбит. Использование здесь (и в некоторых других местах) простейших понятий и рассужденир теории множеств не может затруднить внимательного читателя.  [c.10]

Разделение мехапич. систем на голономные и неголо-номные весьма существенно, так как к Г. с. применимы многие сравнительно простые ур-ния механики и общие принципы, к-рые не справедливы для неголопом-ных систем. Движение Г. с. может изучаться с помощью Лагранжа уравнений механики, Гамильтона уравнений, Гамильтона — Якоби уравнения, а также с помощью наименьшего действия принципа В форме Гамильтона — Остроградского или Мопертюи — Лагранжа. К Г, с. приложимы также все те общие теоремы механики и дифференциальные вариационные принципы механики, К-рые справедливы и для неголономных систем.  [c.515]

Ha основе этой теоремы, которая в настоящее время известна под названием теоремы Якоби — Гамильтона, Якоби дал новое решение знаменитых задач небесной механики о движении планет в поле тяготения Солнца, о движении точки, притягиваемой щвумя неподвижными центрами вместе с тем он определил геодезические линии трехосного эллипсоида. Решение двух последних задач Якоби сопроводил изложением теории эллиптических координат в многомерном пространстве.  [c.20]

Другие доказательства теоремы Якоби. В 25.1 мы привели дока.зательство теоремы Якоби об инвариантности формы уравнений движения по отношению к контактным преобразованиям. Это доказательство основывалось на теореме эквивалентности и, возможно, является простейшим. Тем не менее ввиду важности теоремы Якоби мы приведем еще два доказательства ее, каждое из которых представляет самостоятельный интерес. Одно из них связано с рассмотрением производящих функций контактных преобразований ( 24.2 и 24.3) и включает в себя некоторые приемы, которые окажутся по-пезными впоследствии. Другое доказательство основано на использовании симплектического свойства матрицы М ( 24.13) оно показывает, между прочим, что контактное преобразование не является самым общим преобразованием, при котором уравнения Гамильтона сохраняют свою форму.  [c.513]

Первые 6 лекций Якоби посвящает изложению основных принципов механики принципу сохранения движения центра тяжести системы, принципу живой силы, принципу площадей и принципу наименьшего действия. С 10-ой лекции Якоби развивает теорию множителя" систем обыкновенных дифференциальных уравнений, являющуюся обобщением теории эйлеров-ского интегрирующего множителя. Якоби показывает каким образом можно в целом ряде случаев построить с помощью последнего множителя" всю систему п независимых интегралов. Изложив подробно теорию этого множителя, Якоби затем применяет ее к решению ряда механических задач. С 19-ой лекции Якоби, исходя из вариационного принципа Гамильтона, излагает тот метод интегрирования уравнения с частными производными первого порядка, который известен под названием метода Якоби-Гамильтона". В следующих лекциях этот метод примендется к ряду задач, взятых главным образом из области небесной механики. В 26 лекции Якоби излагает теорию эллиптических координат и показывает их приложение к разысканию геодезических линий эллипсоида, к задаче построения карт, к выводу основной теоремы Абеля и проч. Наконец, последние лекции Якоби посвящены изложению его классических методов интегрирования нелинейных уравнений в частных производных первого порядка.  [c.4]

Проблема точного интегрирования уравнений динамики — одна из самых популярных тем исследования, начиная со знаменитых Математических начал натуральной философии Ньютона. Руководящей идеей в этом круге вопросов является общая идея симметрии. При решении задачи о центральном движении Ньютон уже использовал соображения симметрии факторизуя орбиты группы вращений, он свел эту задачу к изучению движения по прямой в потенциальном поле. Впоследствии Лагранж и Якоби заметили, что классические интегралы задачи многих гравитирующих тел связаны с инвариантностью уравнений движения относительно группы преобразований Галилея. Это фундаментальное наблюдение обобщено Эмми Нётер каждой группе преобразований, сохраняющих действие по Гамильтону, отвечает интеграл уравнений движения. Верно и обратное фазовый поток уравнений Гамильтона, в которых гамильтонианом служит известный интеграл, переводит решения исходных уравнений движения в решения тех же уравнений. На этой идее основано доказательство известной теоремы Лиувилля о полной интегрируемости уравнений Гамильтона фазовые потоки инволютивных интегралов попарно коммутируют и порождают абелеву группу симметрий максимально возможной размерности на многообразиях их совместных уровней.  [c.6]


Первые общие теоремы касаются движения центра массы н были даны Ньютоном в Началах . Десять интегралов н теоремы, к которым онн приводят, были известны Эйлеру. Следующим общим резуль ятом было доказательство существования и рассмотрение свойств неизменной плоскости Лапласом в 1784 г. В зимнем семестре 1842 4i г. Якоби прочел курс лекций по дишмнке в Кенигсбергском университете. В этом курсе он привел результаты некоторых очень важных исследований интегрирования диференциальных уравнений механики. Во всех случаях, когда силы завися г от одних координат и когда существует потенциальная функция (условия, выполненные в задаче я тел), он доказал, что если все интегралы, кроме двух, найдены, то последние два могут быть всегда найдены. Он также показал, развивая некоторые исследования В. Гамильтона, что задача может быть приведена к решению диференциального уравнения с частными производными, порядок которого в два ряза меньше порядка первоначальной системы. Лекции Якоби опубликованы в дополнительном томе к собранию его сочинени.1. Они очень важны сами по себе, а также абсолютно необходимы как вступление к чтению составивших эпоху мемуаров Пуанкаре и должны быть доступны для каждого изучающего небесную механику.  [c.246]


Смотреть страницы где упоминается термин Теорема Гамильтона—Якоби движения : [c.634]    [c.6]    [c.376]    [c.318]    [c.5]    [c.17]    [c.94]    [c.128]    [c.223]    [c.7]   
Теоретическая механика (1981) -- [ c.436 ]



ПОИСК



Гамильтон

Гамильтона теорема

Гамильтона — Якоби

Гамильтона — Якоби теорема

Гамильтона—Якоби движения

Зэк гамильтоново

Поле гравитационное движение приложение теоремы Гамильтона — Якоби

Теорема Якоби

Теорема движения

Якоби

Якоби Якоби

Якоби движения



© 2025 Mash-xxl.info Реклама на сайте