Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Модели линейно-упругого тела - Изотропное тело

Обратим внимание на важную особенность системы (4.17) в нее не входят константы упругости и и. Следовательно, при заданных на поверхности пластинки нагрузках р , ру (4.4) эти уравнения могут быть решены и дадут напряжения, не зависящие от упругих свойств изотропного линейно-упругого материала. Это положение обычно называют теоремой Леви. Она служит теоретическим основанием, позволяющим напряжения, найденные на моделях, изготовленных из какого-либо материала, переносить на геометрически подобные и аналогично загруженные детали конструкций, выполненные из другого материала. Например, в методе фотоупругости используются прозрачные модели, а результаты экспериментальных исследований переносят на стальные, бетонные и т. п. элементы конструкций. Подчеркнем, что строго это положение справедливо только для элементов с заданной поверхностной нагрузкой (а не перемещениями) и, как показывает более подробный анализ, только для односвязных тел, т. е. тел без отверстий. В телах с отверстиями для применимости теоремы Леви надо, чтобы выполнялось дополнительное условие, а именно на каждом из замкнутых контуров тела и отверстий главные векторы и момент поверхностной нагрузки должны быть равны нулю.  [c.77]


Классические модели линейной теории упругости изотропных или анизотропных кристаллических или других сред описывают далеко не все явления, происходящие при деформировании твердых тел.  [c.410]

Для описания механических свойств материалов цилиндров используется модель однородного изотропного линейно упругого тела. Градиент нормальных перемещений У х) поверхности цилиндра определяется соотношением  [c.286]

Очевидно, что могут быть предложены различные непротиворечивые модели упругого изотропного тела, приводящие при экспериментах на одноосное растяжение-сжатие и чистом сдвиге к линейной зависимости между напряжениями и деформациями.  [c.121]

Упругая сплошная среда. Линейно-упругая изотропная сплошная среда характеризуется уравнением состояния в виде закона Гука и представляет собой одну из наиболее простых классических моделей сплошных сред. Свойство упругости означает полную обратимость процесса деформирования при освобождении от нагрузки приобретенная упругим телом деформация исчезает. Математически это выражается формулировкой уравнения состояния в виде конечных однозначных функций (2.11), связывающих компоненты тензоров напряжений и деформаций. Если в формулах  [c.25]

Предметом классической теории упругости является напряженно-деформированное состояние твердых тел, модель которых имеет следующие свойства 1) сплошность, 2) идеальную упругость, 3) линейность зависимости между напряжениями и деформациями, 4) достаточную жесткость (малость перемещений), 5) однородность, 6) изотропность.  [c.4]

На первом этапе поликристаллический материал с микродефектами моделируется при помощи некоторой сплошной, но регулярно неоднородной среды, например i), при помош,и однородной упругой изотропной среды со сферическими анизотропными включениями. Таким образом, модель первого этапа —это композитный материал. Далее выделяется так называемый характерный объем ). Это минимальный объем, содержаш,ий такое число включений, которое позволяет считать, что тело в рассматриваемом объеме макроскопически однородно. Последнее понятие трактуется так. Если на поверхности макроскопически однородного тела в рассматриваемом объеме задать нагрузки, которые в абсолютно однородном теле вызвали бы однородное напряженное состояние, то длина волны флуктуаций полей тензоров напряжений и деформаций должна быть пренебрежимо мала по сравнению с линейными размерами тела, имеющего обсуждаемый объем.  [c.594]


Монография посвящена исследованию длительного разрушения изотропных и анизотропных вязко-упругих тел на основе изучения кинетики роста трещин в телах с различной геометрией и реологическими свойствами материала. В основу исследования положена разработка кинетической модели роста трещины в вязко-упругом теле, исходя из ряда положений модели разрушения Леонова — Панасюка — Дагдейла. Рассматриваются линейные вязко-упругие тела. Исследование ведется в квазистатической постановке.  [c.4]

Для упругих материалов можно получить ряд формулировок для определяющих соотношений (2.17), переписалных в скоростях, в зависимости от используемых производных индифферентных тензоров напряжений s и деформаций е. Рассмотрим только оцну модель упругого материала — линейного. упругого изотропного материала в предположении малой деформации тела. Закон Гука для такого материала имеет две эквивалентные записи — в виде определяющих соотношений для гиперупругого и упругого материалов  [c.85]

Использование всех формулировок для упругих материалов эквивалентно в случае малых деформаций (но, возможно, больших перемещений и поворотов). Эти формулировки должны приводить к приблизительно одинаковым результатам при решении задач (см. 2.1.3). Отметим, что определяющие соотношения закона Гука для линейного упругого изотропного материала можно использовать только для малых деформаций тела. Только при таком ограничении закон Гука описывает поведение реальных материалов. Если формально использовать модель линейного изотропного упругого материала при больших деформациях тела, то TL- и UL-формулировки описывают поведение разных материалов. В [49] на примере решения задачи по растяжению куба отмечается большое расхождение значений компонент тензора напря-  [c.198]

Рассматриваются соотношения связи между напряженным и деформированным состояниями модели упругого изотропного тела при кусочно линейном потенциале в случае малых деформаций. Предполагается, что при одноосном растяжении-сжатии и чистом сдвиге для рассматриваемой модели имеет место линейный закон Гука, изменение объема прямо пропорционально среднему напряжению. В обш,ем случае поведение исследуемой модели отличается от поведения модели упругого изотропного тела, описываемого обш,епринятыми соотношениями линейной теории упругости [1, 2].  [c.111]

В книге приводится методологически последовательная постановка геометрически и физически нелинейных задач механики деформируемого твердого тела, в том числе задачи о потере устойчивости и контактных взаимодействиях тел. Уравнения формулируются относительно скоростей или приращений неизвестных величин. Приводятся слабые формы уравнений и вариационные формулировки задач. Рассматривается применение метода конечных элементов к решению квазистатических и динамических задач. Используются следующие модели материалов изотропная линейно-упругм, несжимаемая нелинейно-упругая Муни — Ривлина, упругопластическая, термоупругопластическая с учетом деформаций ползучести. Приводятся процедуры численных решений нелинейных задач, основанные на пошаговом интегрировании уравнений равновесия (движения). Рассматриваются особенности процедур численного решения задач о потере устойчивости и контакте тел.  [c.2]

Выше на рис. 3.128 я дал несколько сравнений. Наиболее интересным здесь фактом, если не касаться завершения исследования квантованной структуры значений в нулевой точке модулей изотропных элементов, было то, что из экспериментов при конечных деформациях этих тел (которые будут описаны в следующей главе см. часть И), я нашел, что температурная зависимость модулей при очень больших деформациях линейная, коэффициентом в которой является выражение вида (1—Т/Тт)- Модуль упругости при сдвиге при бесконечно малых деформациях также линейно зависит от температуры в этой линейной зависимости имеет место другое выражение коэффициента, а именно, (1—Т12Тп)- Это различие имеет интересный и, может быть, серьезный смысл для атомных теорий, от параметров которых при отыскании конечных деформаций на основе дислокационных моделей зависит модуль упругости при сдвиге.  [c.522]


Непригодными оказываются гипотезы жесткости, однородности, изотропности, упругости и линейной зависимости напря-. жений от деформации. Разнообразны пути, по которым шли отдель- ч 1ые исследователи, создавая рабочие модели пластического тела. Многочисленны предложенные ими упрощения сложных физи- 4 ческих законов пластического формоизменения металлов, а также чметоды постановки и математической интерпретации основной адачи теории пластичности.  [c.17]

Классические модели сплошных поглощающих сред были сформированы во второй половине XIX века. В их основе лежит механизм вязких потерь, отсюда и сложившаяся терминология. Позднее эти модели были переосмыслены с позиций формализма линейных систем были также предложены другие механизмы поглощения - упругое последействие (Больцман, в сейсмических приложениях - В. Б. Дерягин и др.), тепловые потери, диссипация упругой энергии на молекулярном уровне (Г. И. Гуревич), и другие. Однако эти теории не смогли дать более полного объяснения многочисленным экспериментальным данным по сравнению с классическими моделями Кельвина и Фойгта (1885, 1890), моделью Максвелла (1865) и моделью стандартного линейного тела. Поэтому именно эти модели и будут рассмотрены в качестве сплошных изотропных неупругих сред. При этом, если в среде и допускаются флюидонасыщенные поры, то, как и в случае аппроксимации моделью сплошной среды пористых идеально-упругих сред, считается, что при распространении волн флюид не смещается относительно твердого скелета, а упругими свойствами среды считаются осредненные свойства агрегата в целом.  [c.109]


Смотреть страницы где упоминается термин Модели линейно-упругого тела - Изотропное тело : [c.290]   
Машиностроение Энциклопедия Т I-3 Кн 2 (1995) -- [ c.37 ]



ПОИСК



Изотропность

Линейно-упругое тело

Модели линейные упругие

Модель изотропная

Модель линейная

Модель линейно-упругого тела

Модель линейного упругого тела

Модель упругого тела

Тело изотропное,

Упругие тела

Упругости линейная



© 2025 Mash-xxl.info Реклама на сайте