Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Теория изгиба призматических стержней

Главная заслуга теории Сен-Венана заключается именно в том, что она позволяет точно определить касательные напряжения при изгибе, и это составляет суш,ность теории изгиба призматических стержней. Следует заметить, что напряжённое состояние изогнутого бруса, определяемое в теории сопротивления материалов, не удовлетворяет условиям совместности Сен-Венана, а следовательно, не может сущ,ество-вать в изотропном теле ).  [c.305]


Теория изгиба призматических стержней 30I  [c.463]

Большое значение имела работа Л. С. Лейбензона (1935) по теории изгиба призматических стержней, в которой подробно разработан эффективный вариационный метод решения этой задачи, исследован вопрос об определении центра изгиба профиля, а также впервые получена теорема о циркуляции касательного напряжения при изгибе. Дальнейшее развитие вопрос об отыскании центра изгиба получил в работах Н. В. Зволинского  [c.27]

Барре де Сен-Венан (1797—1886), член Парижской академии наук, один из создателей современной теории упругости. Разработал точную теорию кручения и изгиба призматических стержней произвольного поперечного сечения. Известен также работами в области пластических деформаций, теории колебаний. Сформулировал принцип, существенно упрощающий постановку задач теории упругости и сопротивления материалов.  [c.96]

Другим примером успешного приложения экспериментов при решении задач теории упругости является метод мыльной пленки для определения напрял<ений при кручении и изгибе призматических стержней. Трудная проблема решения дифференциальных уравнений в частных производных при заданных граничных условиях заменяется в этом случае измерениями наклонов и прогибов соответствующим образом натянутой и нагруженной мыльной пленки. Эксперименты показывают, что таким путем можно получить не только визуальную картину распределения напряжений, но и приобрести необходимую информацию относительно величины напряжений с точностью, достаточной для практических целей.  [c.16]

Гипотезы, используемые при построении технической теории чистого изгиба призматического стержня  [c.102]

И изгибу призматических стержней и валов переменного диаметра на основе нелинейной теории наследственности с учетом старения материала. Решения задач сводятся к исследованию нелинейных интегральных и интегро-дифференциальных уравнений Вольтерра второго рода. Для решения этих уравнений используется метод малого параметра (этим параметром характеризуется степень нелинейности деформации ползучести), причем приводится доказательство сходимости предложенного метода решения.  [c.191]

Сен-Венан нашел способ определения положения нейтральной оси сечения при косом изгибе решил задачу определения больших прогибов консоли (в случае неприменимости приближенного дифференциального уравнения изогнутой оси) решил задачу изгиба балки, материал которой не следует закону Гука исследовал изгиб кривых стержней плоских и двоякой кривизны вывел формулу для определения продольной деформации винтовых пружин провел дальнейшую разработку теории кручения призматических стержней развил вторую теорию прочности дал расчетную формулу для валов, работающих в условиях совместного действия кручения и изгиба показал, что в частном случае плоского напряженного состояния при аг = —вызывается чистый  [c.562]


В первой главе рассмотрены, более сложные задачи изгиба призматических стержней. Подробно разобраны важные задачи изгиба стержней, лежащих на упругом основании, и даны приложения теории по исследованию напряжений в рельсах й трубах. Также разобрано приложение тригонометрических рядов к исследованию задач изгиба и выведены важные приближенные формулы для случаев одновременного действия продольных и поперечных нагрузок.  [c.6]

Применение изложенной теории к решению ряда задач изгиба и кручения прямолинейного призматического стержня показывает, что если стержень тонкостенный, депланация сечения действительно пропорциональна функции кручения, как это и принимается в ряде работ. Если же стержень криволинейный или закрученный, это предположение в ряде случаев не оправдывается и может при определении напряжений и перемещений привести к существ ным погрешностям.  [c.87]

Так, более подробно разобраны понятия тензоров напряжений и деформаций и их разложение на шаровой тензор и девиатор, добавлен закон Гука в тензорной форме. В новой, V главе рассматриваются простейшие задачи теории упругости чистый изгиб прямого призматического стержня и кручение круглого стержня постоянного сечения. В главе VI добавлен расчет балки-стенки. Далее добавлены следую-ш,ие параграфы Понятие о действии сосредоточенной силы на упругое полупространство , Понятие о расчете гибких пластинок , Понятие о расчете гибких пологих оболочек . Переработан раздел о математическом аппарате теории пластичности, добавлено понятие о теории пластического течения, дано понятие о несущей способности балок и плит на основе модели жесткопластического материала. Вновь написаны главы ХП1 и XIV об основных- зависимостях теории ползучести и даны простейшие задачи теории ползучести.  [c.3]

Техническая теория крутильных колебаний стержней. Для стержня с прямолинейной осью, центр тяжести поперечного сечения которого совпадаете центром изгиба (выполнение этого условия гарантирует существование чисто крутильных колебаний), используют гипотезы статической задачи о чистом кручении призматических стержней, основной из которых является гипотеза плоских сечений.  [c.147]

После весьма обширного обзора существующих теорий, относящихся к поведению призматических стержней прямоугольного, квадратного и круглого поперечных сечений при изгибе, растяжении, сжатии и кручении, Дюло приступает к проведению многочисленных экспериментов, проверяя результаты их различными расчетами, включая использование формулы Эйлера для продольного изгиба стоек, и меняя размеры образцов от опыта к опыту. Он также осуществил эксперименты со стержнями арочной формы, но тех же поперечных сечений, и с системами, представляющими собой ансамбль призматических стержней, проверяя такой вопрос, как трение между примыкающими друг к другу стержнями при изгибе и т. д. Кроме того, он проявил интерес к линии раздела между областями сжатия и растяжения в балках из ковкого железа (т. е. к нейтральной линии), а также линейности зависимости между напряжениями и деформациями.  [c.265]

В сборник моих статей по прочности и колебаниям элементов конструкций включены двадцать шесть работ они посвящены изучению деформированного и напряженного состояния стержневых систем (рамы, рельсы, мосты), тонких упругих пластин и оболочек, анализу изгиба и кручения призматических стержней, плоской задаче теории упругости и общим проблемам прочности Кроме того, приведены статьи о колебаниях стержневых систем и об ударе по упругой балке.  [c.9]

Поверхность напряжений в виде произведения двух степенных функций (16.84) была использована Дэвисом для практического анализа медленной ползучести при изгибе в условиях высоких температур в сравнительных испытаниях на изгиб и растяжение литых хромо-никелевых стержней ) Вначале определялся показатель п по результатам испытаний на растяжение с постоянной скоростью при температурах 1500 и 1652° Р, после чего призматические стержни были подвергнуты чистому изгибу при каждой из этих двух температур путем нагружения их постоянным изгибающим моментом, действовавшим в течение одной недели 2). При испытаниях определялся прогиб гю как функция времени t, после чего вычислялись деформации изгиба ползучести на равномерно согнутом рабочем участке стержня, имевшем постоянную кривизну, причем предполагалось, что поперечные сечения остаются плоскими ). Согласно теории пластического изгиба, основанной в данном случае на постулате о наличии поверхности напряжения в виде произведения двух степенных функций (16.84), деформации изгиба ползучести е" в крайних волокнах поперечных сечений должны давать в логарифмических координатах е", 1 семейство параллельных прямых, отвечающих различным постоянным значениям изгибающего момента М. Этот вывод удовлетворительно подтвердился проведенными испытаниями на изгиб, что говорит о возможности использования функции напряжений (16.74) для практического анализа поведения металлов ).  [c.663]


Сен-Венан в классических работах по теории кручения и изгиба, опубликованных в 1855—1856 гг., дал на основе общих уравнений теории упругости решение задач изгиба и кручения призматических стержней. В этих исследованиях Сен-Венан создал полуобратный метод решения задач теории упругости, высказал знаменитый принцип Сен-Венана , позволивший перейти к эффективному решению задач теории упругости, и разобрал большое число конкретных примеров.  [c.5]

Изучаются изгиб и кручение призматических стержней, плоская задача теории упругости (изгиб кругового стержня, задача Ламе для кругового кольца, задача Колосова для эллиптического отверстия в бесконечном растягиваемом листе).  [c.6]

Задача Сен-Венана о равновесии упругого призматического стержня под действием произвольной нагрузки, заданной на его торцах, является одной из важнейших задач теории упругости, поскольку ее решение дает возможность оценить точность элементарной теории изгиба, рассматривающейся в сопротивлении материалов, а также позволяет исследовать представляющую значительный практический интерес проблему кручения стержней, которая не может быть решена элементарными приемами. Задача Сен-Венана (в общей ее постановке) является, кроме того, одной из труднейших задач теории упругости. С математической точки зрения она решена далеко не полно. Однако в силу так называемого принципа Сен-Венана имеющееся ее решение, излагаемое ниже, может рассматриваться (хотя и с некоторыми оговорками) как исчерпывающее вопрос.  [c.236]

Рассмотрим теперь поперечные колебания призматического стержня (рис. 5.13, а) в плоскости ху, которая является плоскостью симметрии для его поперечных сечений. Так же, как и выше, в случае колебаний растянутой нити через у обозначим поперечное перемещение малого элемента стержня, расположенного на расстоянии л от левого конца последнего. Если для нити жесткость при изгибе Е1 предполагалась малой, в случае стержня эту жесткость следует учитывать. На рис. 5.13, б показан малый элемент стержня длиной йх, а также внутренние и внешние силы, действующие на него. На этом рисунке знаки поперечной силы V и изгибающего момента М взяты в соответствии с принятым в теории изгиба стержней правилом . При поперечных колебаниях стержней условие динамического равновесия сил, действующих в направлении оси у, имеет вид  [c.372]

Пластический изгиб балки в случае произвольной зависимости между деформациями и напряжениями. Теорию поперечного изгиба стержня малых в сравнении с длиной поперечных размеров из материала, закон деформирования которого отличается от закона Гука, можно сформулировать относительно просто. Предположим, что стержень постоянного поперечного сечения цилиндрической или призматической формы нагружен силами, перпендикулярными его продольной оси и действующими в одной из плоскостей, проходящих через ту или иную из главных осей инерции его поперечного сечения. Будем предполагать также, что размеры этого поперечного сечения в сравнении с его длиной малы и что мы вправе поэтому при исследовании деформаций, обусловленных нормальными напряжениями, пренебрегать деформациями, вызванными касательными напряжениями. Наконец, мы исключаем из нашего рассмотрения профили, составленные, хотя бы и частично, из тонкостенных элементов, а также профили несимметричной формы (как, например, уголки или швеллера), поскольку в подобных случаях изгиб может осложняться кручением.  [c.402]

Теория спиральной пружины ). Пусть поперечное сечение стержня имеет кинетическую симметрию, так что А=В, w пусть в ненапряженном состоянии стержень имеет форму винтовой линии и такую степень кручения, что при устранении изгиба стержень становится призматическим. Начальное состояние такого стержня определяется следующими формулами  [c.433]

Навье Луи Мари Анри (1785—1836), член фрямцу чк(1П Академии наук, ученый в области Механики и матом ггмки, один из основоположников теории упругости. Первим ввел понятие о напряжении, разработал полную теорию изгиба призматического стержня, установил положение нейтральной линии при изгибе, дал формулу для кривизны упругой линии. Вывел уравнения изгиба пластин. Его перу принадлежит первый курс сопротивления материалов (1826).  [c.291]

Общую теорию изгиба призматических стержней можно найти в статье И. Геккелера ). Из этой теории следует, что в поперечных сечениях, достаточно далеко расположенных от концов стержня и от точек приложения нагрузок, известная приближенная теория Якоба Бернулли дает точные значения для нормальных напряжений и для кривизны упругой линии. Как известно, теория Бернулли исходит из предположения, что поперечные сечения при изгибе стержня остаются плоскими и нормальными к центральной линии стержня. Распределение касательных напряжений по поперечному  [c.575]

Пока нет подтверждения описанной выше картины деформации теоретическим путем, естественно полагать ее не абсолютно строгой, так как всякий опыт сопряжен с погрешностями. Поэтому на основе экспериментальной картины формулируются гипотезы, отражающие ее характер, и при ишшци их строится техническая теория чистого изгиба призматического стержня. Сформулируем две гипотезы.  [c.102]

В своем Трактате по механике ( Traite de me anique ) Пуассон не пользуется общими уравнениями теории упругости, а выводит особые для прогибов и колебаний стержней, исходя из допущения, что в процессе деформирования поперечные сечения их остаются плоскими. Для изгиба призматических стержней он пользуется не только уравнением второго порядка, выражающим пропорциональность кривизны упругой линии изгибающему мо-  [c.138]


Теорию кручения старались построить еще задолго до Сен-Венана и в этом направлении достигли некоторых успехов. Повидикоку, впервые этой задачей серьезно занялся Кулон ( oulomb) он нашел правильную формулу для угла кручения стержня круглого сечения. Затем позже На.вье (Navier), пользуясь своей теорией изгиба, развил полную теорию кручения призматических стержней произвольного сечения, которая была очень проста и претендовала на полное и правильное решение всей задачи. Эта теория пользовалась всеобщим признанием до середины прошлого столетия и она даже до настоящего столетия имела еще отдельных последователей, хотя и была в очевидном противоречии с некоторыми очень простыми и общеизвестными опытными фактами.  [c.48]

Еще в 1828 г. Коши и Пуассон применили общие уравнения для оценки пригодности элементарной теории изгиба тонких стержней, а в следующем году Коши вывел приближенные формулы для кручения тонких прямоугольных стержней. Эти исследования Коши дали толчок для развития Сен-Ве-наном общей теории изгиба и кручения призматических стержней, явившейся крупнейшим практическим достижением теории упругости в середине XIX в.  [c.55]

Эти простейшие задачи на основании различных произвольных допущений относительно деформации тел были разрешены значительно ранее установления обпщх уравнений теории упругости. Сюда относятся случаи растяжения и сжатия призматических стержней, задача о всестороннем равномерном сжатии, чистый изгиб призматических стержней и пластинок и кручение круглых стержней. Все эти вопросы излагаются в элементарном курсе сопротивления материалов. Здесь мы еще раз возвращаемся к ним, чтобы на самых простых примерах показать общий ход решения задач теории упругости и выяснить общий метод определения перемещений точек упругого тела, если известно распределение напряжений.  [c.62]

Гораздо большее влияние на степень точности приближенного уравнения (206) имеет величина трех прогибов w, которые получает пластинка. Условие малости прогибов ограничивает область применения полученного выше приближенного уравнения к исследованию изшба пластинок в значительно большей степени, чем, например, при рассмотрении изгиба призматических стержней. Приближенная теория для призматических стержней дает удовлетворительные результаты даже в тех случаях, когда прогибы в несколько раз превосходят поперечные размеры стержня. Но в случае пластинок приближенное уравнение можно с уверенностью применять лишь тогда, когда прогибы пластинки малы по сравнению с ее толшдной. Причиной такой разницы между тонкими стержнями и тонкими пластинками является то обстоятельство, что искривление пластинки без деформаций в срединной плоскости возможно лишь в исключительных случаях, когда срединная плоскость обращается при изгибе в развертываемую поверхность Во всех других случаях изгиб сопровождается появлением деформаций в срединной поверхности. Деформации эти растут с прогибом и могут достигать значений такого же порядка, что и те деформации, которые учитываются приближенным решением. Эти обстоятельства легко объяснимы при рассмотрении простейшей задачи, которой является изгиб круглой пластинки парами сил, равномерно распределенными по контуру. Приближенное решение 200) соответствует в этом случае изгибу пластинки по шаровой поверхности. Пусть R — радиус этой поверхности, а — радиус пластинки и линия АОВ  [c.383]

Используя указанные идеи, Сен-Венан создал теорию кручения призматических стержней, показав ошибочность теории Навье разработал теорию изгиба стержней и решил большое число задач для конкретных профилей. Он разобрал также случай одновременного кручения и изгиба, решив тем самым задачу, ныне, по предложению Клебша, называемую задачей Сен-Венана.  [c.12]

Однако существенно больший интерес представляют такие задачи, для решения которых элементарные гипотезы не могут привести к цели. Типичный пример — задача о кручении призматического стержня. Если принять для кручения такую же гипотезу плоских сечений, которая была принята для изгиба, окажется, что верный результат получится только для того случая, когда сечение представляет собою круг или круговое кольцо для других форм сечения эта гипотеза приведет к очень грубой ошибке. Точно так же никакие элементарные нредно-ложения не позволяют найти напряжения в толстостенной трубе, подверженной действию внутреннего давления. Можно привести много примеров других элементов конструкций, для которых напряжения и деформации нельзя определить с помощью элементарных приемов, а нужно использовать уравнения теории упругости.  [c.266]

В последующих же главах во втором томе, в частности в главах XI, XII, XIII, посвященных деформации стержней, аппарат теории сплошных сред (главным образом теория упругости) играет уже чисто служебную роль, как рабочий инструмент, с одной стороны, для оценки гипотез, используемых в элементарной теории, и границ применимости последней, а с другой стороны, для решения тех задач, которые не могут быть решены средствами элементарной теории. К числу последних относятся кручение призматических стержней некруглого поперечного сечения, свободное кручение валов переменного вдоль оси диаметра, определение полного касательного напряжения при поперечном изгибе балки, определение положения центра изгиба в поперечном сечении массивных стержней и др.  [c.13]

В тех случаях, где теория упругости не дает точного ответа на по ставленную задачу, мы считали необходимым указывать на приближенные методы решения вопроса. Приближенным способам интегрирования дифференциальных уравнений, встречающихся в теории упругости, мы придаем большое значение и полагаем, что решение целого ряда весьма важных технических задач зависит от развития этих методов. В нашем курсе мы считали необходимым хотя бы вкратце коснуться известного приема решения уравнений математической физики, предложенного Вальтером Ритцем , и применили этот прием при решении плоской задачи и при исследовании изгиба и кручения призматических стержней. Отметили вычислительный метод решения уравнений в частных производных, разработанный Л. Ричардсоном а также вычислительный и графический методы, предложенные К. Рунге и разработанные его учениками  [c.10]

Задачи кручения и изгиба призматических анизотропных стержней были сформулированы в работах С. Г. Лехницкого (1938, 1942, 1956) результаты этих исследований и решения ряда других задач по теории упругости анизотропных сред суммированы в его монографии (1950). Еще раньше кручение анизотропных призм при помощи обобщенной мембранной аналогии изучал А. Ш. Локшин (1927), рассмотрев сечения в виде круга, эллипса, прямоугольника и параллелограмма. Некоторые задачи об изгибе и кручении анизотропных призм вариационным методом исследовал Л. С. Лейбензон (1940). Приближенному решению задачи о кручении анизотропного стержня авиационного профиля посвящена статья  [c.30]

Задачи кручения и изгиба составных призматических стержней и валов переменного диаметра на основе линейной теории наследственного старения исследовались в работах Н. X. Арутюняна и К. С. Чобаняна (1955—  [c.189]

Настоящая работа посвящена одному из возможных подходов к построению теории тонких оболочек (ТТО), основанному на принципиально новой модели. Исследование построено следующим образом. Проанализированы основные допущения, положенные в основу классической ТТО, а также неустраняемые в ее рамках противоречия, модель оболочки и ее математическая обоснованность. Построены новая модель ТТО и следующая из нее схема оболочки. Затем рассмотрены возможности, к которым приводит эта схема. Сформулированы основные исходные положения и решена поставленная задача — построено разрешающее уравнение. Приведены примеры технических приложений предложенного варианта теории, в частности для изгиба стержней, пластин, призматических оболочек, в том числе со сложными отверстиями, а также для распределения напряжений в оболочках сложной формы при нормальном давлении.  [c.3]


Дан стержень призматического сечения (рис. 42), и к основаниям его приложены равные, но противоположные пары сил. Ось г направим по оси стержня плоскость хг совпадает с плоскостью действия приложенных пар. Случай этот носит название чистого изгиба элементарная теория его разработана в XVIII веке Я. Бернулли и Эйлером она основана на гипотезе, предполагающей, что ось стержня ОВ изогнется по кривой, лежащей в плоскости хг, и что плоские поперечные сечения стержня останутся плоскими и нормальными к изогнувшейся оси. Из простых геометрических соображений (излагаемых в курсах сопротивления материалов) можно заключить, что  [c.116]


Смотреть страницы где упоминается термин Теория изгиба призматических стержней : [c.162]    [c.288]    [c.280]    [c.34]    [c.22]    [c.491]   
Курс теории упругости Изд2 (1947) -- [ c.305 ]



ПОИСК



Гипотезы, используемые при построении технической теории чистого изгиба призматического стержня

Изгиб стержня

Изгиб стержня стержня

Призматические стержни изгиб

Простейшие задачи теории пластичности Упруго-пластический изгиб призматического стержня

Стержень призматический

Стержни — Стержни призматические

Теория изгиба

Теория изгиба призматических стержней 464предметный УКАЗАТЕЛЬ

Теория изгиба стержней



© 2025 Mash-xxl.info Реклама на сайте