Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Переменная Жуковского

И определить функцию г = /а (i) интегрированием. При решении многих задач теории струй целесообразно вводить так называемую переменную Жуковского  [c.253]

Параметры торможения газа 337 Переменная Жуковского 274 Плотность распределения массовых сил 62  [c.458]

Рассмотрим теперь, во что перейдет область течения на плоскости переменного Жуковского  [c.330]

Для решения основной задачи отображения области течения 2 на плоскость С Леви-Чивита предложил рассматривать вместо переменной Кирхгоффа 1/г и переменной Жуковского комплекс-  [c.346]


Это замечание позволяет упростить применение признаков устойчивости движения по А. М. Ляпунову к вопросу об устойчивости траекторий. Выбирая за независимую переменную одну из координат точек системы, монотонно возрастающую вместе с возрастанием времени t, и приравнивая остальные координаты функциям Qh Ляпунова, вновь заключаем, что определение устойчивости движения по Н. Е. Жуковскому вытекает из общего определения А. М. Ляпунова как частный случай.  [c.330]

F,,. Раньше всего замечаем, что произведенный в 38 вывод формулы Жуковского (38,4) полностью применим и к сжимаемой жидкости, поскольку вместо переменной плотности р жидкости все равно надо в том же приближении писать постоянную величину р1. Таким образом,  [c.649]

В развитие механики значительный вклад внесли многие отечественные ученые, в том числе отец русской авиации Н. Е. Жуковский (1847—1921), автор известного в свое время учебника по теоретической механике И. В. Мещерский (1859—1935), заложивший основы механики тел переменной массы, его задачник по теоретической механике переиздается и в наши дни.  [c.4]

При подготовке второго издания пересмотрен и заново отредактирован весь текст книги, часть материала исключена, многие выводы и доказательства сделаны более компактными. Так, например, исключено отдельное доказательство теоремы Жуковского о подъемной силе, поскольку эта теорема вытекает из приводимых в книге формул Чаплыгина исключены главы Теорема Жуковского для решетки , Уравнения движения в слое переменной толщины , поскольку эти вопросы являются специальными и рассматриваются в курсе Теория лопастных гидромашин .  [c.3]

Надо, впрочем, отметить следующее. Кирхгоф, Н. Е. Жуковский и другие дали особые методы для определения размера сжатого сечения при истечении жидкости из различных отверстий. Эти методы основаны на теории функций комплексной переменной и относятся к плоскому безвихревому установившемуся движению идеальной невесомой жидкости. Приближенное (а в некоторых случаях и точное) использование указанных методов для определения площади сос сжатого сечения несколько расширяет круг задач, для которых может быть найдено теоретически.  [c.194]

Второй тип методов, получивший развитие в работах М. И. Жуковского, С. Ф. Абрамовича, Г. С. Самойловича н др., основан на использовании теории функций комплексного переменного. Решетка профилей в плоскости z путем использования некоторой аналитической функции = f (z) отображается на одиночный контур или решетку контуров в плоскости . Функция = f (z) подбирается таким образом, чтобы в результате отображения в плоскости получить контур или решетку контуров, для обтекания которых может быть получено аналитическое решение. Эти методы в настоящее время нашли широкое применение для  [c.52]


Сила давления на крыловой профиль при плоском нестационарном потоке определяется обобщённой ф-лой Жуковского, содержащей помимо члена реГ члены, зависящие от присоединённых масс и от переменности во времени циркуляции скорости Г, Для профиля, имеющего форму эллипса с полуосями а и Ь, составляющие суммарной силы, действующей на профиль, равны  [c.337]

Ниже приведены результаты решения ряда задач о движении частицы по вибрирующей шероховатой плоской поверхности в условиях, близких к условиям классической задачи Н. Е. Жуковского о движении частицы по горизонтальной плоской поверхности, совершающей круговые поступательные колебания. Далее изложен общий подход к рассмотрению класса более сложных задач, характеризующихся наличием разного рода возмущений (наклон поверхности, добавочные силы, дополнительные колебания) этот подход основан на преобразовании системы к полярным переменным и использовании метода малого параметра. Затем приведены результаты решения некоторых задач данного класса, интересных в прикладном отношении.  [c.42]

Лобовое сопротивление. Теории сопротивления трения. Пограничный слой. Уравнения Прандтля. Физические следствия из уравнений Прандтля. Отрыв струи. Преобразование уравнений Прандтля к новым переменным. Пограничный слой на плоской пластинке. Метод Блазиуса. Интегральное соотношение Кармана. Исследование пограничного слоя при помощи интегральных соотношений. Определение сопротивления трения профилей Жуковского. Влияние толщины и изогнутости профиля на местные и полные коэффициенты трения.  [c.214]

Я начал с критического рассмотрения программ, и первыми нововведениями в курсе были вопросы динамики точки переменной массы и более подробное изложение законов сохранения динамических мер механического движения (количества движения, кинетического момента и механической энергии). Я думаю, что строгий вывод уравнения Мещерского, формулы Циолковского и рассмотрение простейших экстремальных задач динамики точки переменной массы были введены в обязательный курс механики впервые в нашей стране на факультетах № 1, 2, 3 академии имени Н. Е. Жуковского. Позднее я опубликовал ряд задач динамики точки переменной массы, в небольшой книжке, изданной издательством академии . Хорошо  [c.225]

Перейдем от комплексного переменного z к комплексному переменному используя преобразование Жуковского  [c.177]

Наибольший интерес представляет плоское безвихревое движение, для которого, кроме потенциала скоростей, существует еще функция тока, введенная впервые Лагранжам в 1781 г. кинематическая интерпретация функции тока, связанная с понятием линии тока, была дана значительно позднее (в 1864 г.) Рэнкиным. Наличие этих двух функций— потенциала скоростей и функции тока, удовлетворяющих в отдельности уравнениям Лапласа, позволило свести решение гидродинамической задачи к разысканию одной комплексной функции — комплексного потенциала. Подробное изложение этого метода, весьма близкого к современному, можно найти в двадцать первой лекции классических Лекций по математической физике (ч. 1, Механика) Кирхгоффа (1876). Отдельные задачи плоского безвихревого потока решались и ранее самим Кирхгоффом в 1845 г. и Гельмгольцем в 1868 г. Заметим, что с математической стороны эти задачи эквивалентны аналогичным задачам электростатики. Наряду с плоским стационарным безвихревым движением были изучена некоторые простейшие задачи нестационарного дви кения (Рэлей в 1878 г., Лэмб в 1875 г. и др.). Особенно больших успехов метод комплексной переменной достиг в теории обтекания тел со срывом струй, созданной трудами Гельмгольца, Кирхгоффа и Жуковского. Подлинного своего расцвета плоская задача безвихревого стационарного и нестационарного движения достигла в первую четверть нашего столетия в замечательных работах ученых московской школы, о чем еще будет речь впереди.  [c.25]


Значительное развитие и углубление получила гидродинамика плоского безвихревого потока в работах М. В. Келдыша, М. А. Лаврентьева, Л. И. Седова и других, продолжавших с успехом применять в теории крыла методы теории функций комплексного переменного, в свое время выдвинутые Н. Е. Жуковским и С. А. Чаплыгиным. Исследования Жуковского по обтеканию тел с отрывом струй были обобщены и получили новые применения в работах М. А. Лаврентьева, А. И. Некрасова и др.  [c.33]

Явление удара тела о свободную поверхность тяжелой жидкости, изученное впервые Н. Е. Жуковским еще в 1910 г., было с исчерпывающей полнотой исследовано М. А. Лаврентьевым, М. В. Келдышем, Л. И. Седовым и другими в период 1932—1934 гг. работы этих ученых показали всю силу метода теории комплексного переменного в задачах гидродинамики.  [c.34]

Вывод теоремы Жуковского, основанный на применении теории функций комплексного переменного, был дан в 1910 г. С. А. Чаплыгиным, 2 который получил общие формулы главного вектора и главного момента сия давления потока на крыло.  [c.284]

Со второй половины XIX столетия наряду с продолжающимися строгими и изящными аналитическими исследованиями в механике под влиянием чрезвычайно быстрого роста техники возникает и все более и более интенсивно разрастается другое направление, связанное с решением реальных практических задач при этом важным методом исследования в механике наряду с математическим анализом и геометрией становится эксперимент. Выдающимися представителями этого направления являются творец теории вращательного движения артиллерийского снаряда в воздухе Н. В. Майеаский (1823—1892) основоположник гидродинамической теории трения при смазке И. П. Петров (1836—1920) отец русской авиации Н. Е. Жуковский (1847—1921) создатель основ механики тел переменной массы, нашедшей важные приложения в теории реактивного движения, И. В. Мещерский (1859—1935) известный исследователь в области ракетной техники и теории межпланетных путешествий К. Э. Циолковский (1857—1935) автор выдающихся трудов во многих областях механики, непосредственно связанных с техникой, основоположник современной теории корабля А. Н. Крылов (1863—1945) один из крупнейших отечественных ученых автор ряда фундаментальных работ по аналитической механике и аэродинамике, создатель основ аэродинамики больших скоростей С. А. Чаплыгин (1869—1942) и многие другие ).  [c.16]

Одним из крупнейших представителей созданной Н. Е. Жуковским школы русских гидроаэромехаников является С. А. Чаплыгин (1869—1942). С. А. Чаплыгину принадлежат выдающиеся исследования в области движения твердого тела вокруг неподвижной точки, исследования движения тел с неголономными связями и др. Наиболее крупные работы С. А. Чаплыгина относятся к гидро- и аэромеханике. Ему принадлежат очень важные исследования по теории механизированного крыла. С. А. Чаплыгин развил теорию крыла, указав на плодотворность применения к этим задачам методов теории функций комплексного переменного. Он является основоположником теории крыла при ускоренных и замедленных движениях. С. А. Чаплыгин разработал теорию решетчатого крыла, нашедшую широкое применение в расчетах турбомашин. С. А. Чаплыгин является основоположником новой науки — газовой динамики, или аэродинамики больших скоростей.  [c.18]

Значительный вклад в развитие теоретической механики был сделан отечественными учеными. Назовем здесь М. В Остроградского (1801—1862, работы в области аналитической механики) и П. Л. Чебышева Ц821—1894, работы в области теории механизмов и машин), С. В. Ковалевскую (1850— 1891), решившую задачу для сложного случая движения твердого тела около неподвижной точки. Наибол1.ший вклад в теоретическую механику за последующий период был сделан А. М Ляпуновым (IS. j —1918), особенно его трудами по созданию теории устойчивости движения механических систем, Н. Е. Жуковским (1847—1921), основополон ником современной аэродинамики, а также И. В Мещерским (18.59—193. )), давшим решение задачи о движении точки переменной массы, С А. Чаплыгиным (1869—1942), А. Н. Крыловым (1863—1945), Н. Г Четаевым (1902—1959) и др.  [c.16]

Пр и м е р. Снова рассмотрим задачу Н. Е. Жуковского (см. рис. 114). Положение балки определяется углом ABOi = Q, образованным с горизонтальным полом следовательно, 0 является голономной координатой рассматриваемой системы, и потому уравнение движения в переменной 0 будет иметь вид уравнения Лагранжа.  [c.165]

Впоследствии схема Рябу-шинского была обобщена для других случаев рядом авторов. В частности, М. И. Гуревичем рассмотрена задача о кавитационном обтекании наклонной пластины (рис. 10.10, б). Д. А. Эфросом и независимо другими авторами предложена одна из наиболее удачных схем суперкаверны с возвратной струйкой (рис. 10.10, в). По этой схеме в концевой части каверны образуется возвратная струйка, которая при описании течения G помощью функций комплексного переменного, уходит на второй лист римановой поверхности. Поэтому условие постоянства размеров каверны не нарушается. Эта схема для плоской пластины дает результаты, близкие к результатам, полученным по схеме Рябушинского. Было предложено и несколько других схем. На рис. 10.10, г, д, е приведены схемы Тулина, Жуковского — Рошко, Лаврентьева. Каждая из них позволяет решить задачу обтекания и, в частности, найти коэффициент лобового сопротивления обтекаемого тела как функцию числа кавитации х. Для этого коэффициента по схемам нескольких авторов для пластины, нормальной к потоку, получена формула  [c.402]

Ранее всего и наиболее полно были разработаны методы теории струй, и поэтому они нашли наиболее широкое применение при решении плоских задач кавитационных течений. При этом методе используют математический аппарат теории функции комплексного переменного. Суть метода состоит в том, что течение на физической плоскости преобразуется на вспомогательную плоскость с помощью некоторой преобразующей функции, которую в процессе решения необходимо найти. Вспомогательную плоскость выбирают такой, чтобы можно было получить наиболее простое решение. Способы определения преобразующей функции отличаются различной формой представления преобразующей функции (вспомогательной плоскости), и большинство из них известны под именами их авторов — Кирхгоффа, Н. Е. Жуковского и С. А. Чаплыгина и др.  [c.59]


Впервые графические методы исследования были применены к решению задачи динамики в мемуаре Кориолиса О влиянии момента инерции балансира паровой машины и ее средней скорости на регулярность вращательного движения, сообщаемого маховику возвратнопоступательным движением поршня (1832). В отношении расчета маховика исследование Кориолиса (построившего диаграмму касательных усилий, диаграмму работ и диаграмму переменных приведенных масс поршня и коромысла) было продолжено Мореном, Портером, Радингером и Виттенбауэром. О работах по графической статике и графической динамике Прелля, Жуковского и Виттен-бауэра упоминалось выше.  [c.152]

ТЕОРЕМА [взаимности (перемещений перемещение точки А под действием силы, приложенной в точке В, равно перемещению точки В под действием силы, приложенной в точке А работ работа первой силы на перемещении точки ее приложения под действием второй силы равна работе второй силы на перемещение точки ее приложения под действием первой силы ) Гульдена — Панна ( площадь поверхности, полученной вращением дуги плоской кривой (или ломаной линии) вокруг оси, лежащей в ее плоскости, но ее не пересекающей, равна длине этой дуги, умноженной на длину окружности, описанной центром тяжести объем тела вращения, образованного вращением плоской фигуры вокруг оси, лежащей в плоскости этой фигуры и ее не пересекающей, равен произведению площади этой фигуры на длину окружности, описанной центром тяжести площади фигуры ) Гюйгенса точка подвеса физического маятника и центр качания суть точки взаимные Гюйгенса — Штейнера момент инерции тела относительно некоторой оси равен сумме момента инерции тела относительно оси, проходящей через центр масс параллельно данной, и произведения массы тела на квадрат расстояния между ними о движении центра масс ( центр масс системы движется как материальная точка, масса которой равна массе всей системы и к которой приложены все внещние силы, действующие на систему тела с переменной массой центр масс тела с переменной масой движется как точка затвердевшей массы, в которой сосредоточена масса тела в данный момент и к которой приложены главный вектор активных внешних сил и главный вектор реактивных сил ) Жуковского если силу, приложенную к какой-либо точке звена плоского механизма, перенести параллельно самой себе в одноименную точку повернутого плана скоростей, то момент этой силы относительно полюса плана скоростей будет пропорционален ее мощности ]  [c.282]

Наибольшие успехи в рамках модели идеальной жи,акоети были дост иг нуты Гельмгольцем и Кирхгофом, разработавшими методы теории функций комплексной Переменной. Дальнейшее развитие )ти методы получили в работах Н.Е.Жуковского, С.А,Чаплыгина и их учеников.  [c.6]

Поиски возможности теоретического моделирования кавитационного обтекания при отличных от нуля числах кавитации привели к установлению новой схемы обтекания с образованием возвратной струйки (отводящей некоторое количество жидкости на фиктивный второй лист римановой поверхности). Эта, казалось бы, надуманная схема, предложенная в 1946 г. Д. А. Эфросом и одновременно группой американских исследователей , на самом деде дала возможность получить хорошие оценки для параметров кавитационного обтекания. Впрочем, и ряд других схем (пожалуй, однако, менее изящных) дает результаты, близкие к рассчитанным по схеме с.возвратной струйкой. 285 Это — 1) схема Д. П. Рябзотинского с замыкающим каверну симметричным телом, перенесенная в 1932 г. на условия кавитации Ф. Вайнигом 2) схема с переменной скоростью на струях Л. И. Седова — М. И. Гуревича 3) схема с замыканием границ каверны на параллельные полупрямые, которую исследовал с другой целью еще Жуковский в 1890 г. (к задачам кавитационного обтекания последняя схема была приложена лишь в 50-х годах). Любопытная схема струйного обтекания со спиралеобразными особенностями на струях предложена недавно М. П. Тулиным  [c.285]

Работы Н. Е. Жуковского по аэродинамике были развиты трудами выдаюш.егося русского механика академика С. А. Чаплыгина (1869—1942). Отлично владея методами математического анализа и будучи аналитиком по складу своего творческого мышления, Чаплыгин предугадал в ряде работ последующее развитие технической аэродинамики. Ему принадлежат замечательные исследования по теории механизированного крыла (крыла с предкрылком, крыла со Ш.ИТКОМ), актуальность которых выяснилась лет через 15—20 после их опубликования. Еще в 1903 г. Чаплыгин создал метод изучения движения газов при больших дозвуковых скоростях, заложив основы плодотворного исследования широкого класса задач аэродинамики больших скоростей. В научно-технической литературе эта работа получила всеобщее признание лишь в 1935 г. Чаплыгин развил теорию профиля крыла самолета, указав на плодотворность применения к этим задачам методов теории функций комплексного переменного. Он является зачинателем нового раздела аэродинамики — теории крыла при ускоренных и замедленных движениях. Чаплыгин разработал оригинальную теорию решетчатого (или разрезного) крыла, нашедшую сейчас широкие применения в расчетах турбомашин.  [c.70]

Мне пришлось чр1тать несколько факультативных и специальных курсов в Московском университете и Военно-воздушной инженерной академии имени Н. Е. Жуковского. Я расскажу, как постепенно формировались два курса Теория лобового сопротивления и Механика тел переменной массы .  [c.213]

Прандтль [8] систематизировал идеи и упростил картину следуюгцим образом а) крыло заменяется несугцей линией, составляющей нернендикуляр к нанравлению полета б) по предположению несущая лнння состоит из нрисоединенного вихря с переменной циркуляцией для того, чтобы объяснить тот факт, что подъемная снла может изменяться вдоль размаха в) в соответствии с изменением циркуляции вдоль размаха, рождаются свободные вихри и расширяются но потоку однако, г) течение, созданное системой вихрей, считается малым возмущением основного потока относительно крыла, и поэтому д) предполагается, что свободные вихри приблизительно следуют первоначальному направлению линий обтекания параллельно и противоположно направлению полета вместо того, чтобы немедленно закончиться концевым вихрем, как полагал Ланчестер (рис. 25) е) течение в непосредственной окрестности профиля крыла определяется на основе двумерного решения, предложенного Кутта и Жуковским.  [c.61]

Примененне метода комплексных переменных к выводу теоремы Жуковского. Формулы Чаплыгина для главного вектора и момента сил давления потока на крыло  [c.284]

Формулы Жуковского и Чаплыгина позволяют сделать некоторые общие выводы, относящиеся к задаче об обтекании плоскопараллельным потоком крылового профиля произвольной формы. Особенности формы крылового профиля можно охарактеризовать коэффициентами разложения функции /(С), преобразующей (рис. 87) контур профиля С в круг С [ 42, формула (74)], в ряд по отрицательным степеням комплексной переменной С во вспомогательной плоскости. Как сейчас будет показано, здесь вновь обнаруживается замечательный факт зависимости силы и момента лишь от первых трех коэффициентов разложения, аналогичный тому, как это имело место при использовании разложения комплексной скорости.  [c.289]



Смотреть страницы где упоминается термин Переменная Жуковского : [c.434]    [c.274]    [c.454]    [c.105]    [c.185]    [c.35]    [c.440]    [c.104]    [c.168]    [c.79]    [c.32]    [c.406]    [c.547]    [c.239]    [c.241]   
Техническая гидромеханика (1987) -- [ c.253 ]

Техническая гидромеханика 1978 (1978) -- [ c.274 ]



ПОИСК



Жуковский

Применение метода комплексных переменных к выводу теоремы Жуковского. Формулы Чаплыгина для главного вектора н момента сил давления потока на крыло

Разделение переменных для случая Жуковского - Вольтерра



© 2025 Mash-xxl.info Реклама на сайте