Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Упрочнение Влияние давления

Рассматривая влияние давления при ЭМО, следует учитывать, что тепловое воздействие на поверхностный слой в этом случае обусловливается прохождением электрического тока. Увеличение давления понижает сопротивление контакта, соответственно уменьшая электрическую мощность и глубину высокого упрочнения б.  [c.18]

Влияние давления прессования на степень упрочнения сырца  [c.154]


В процессе резания поверхностный слой обрабатываемой детали под влиянием давления резца изменяет свои механические свойства — твердость увеличивается, пластичность уменьшается. Это явление называют упрочнением или наклепом. Глубина и степень наклепа зависят от качества металла, режима резания, состояния режущей кромки резца и других факторов. Следует помнить, что глубина наклепа при работе тупым резцом в 2—3 раза больше, чем при работе хорошо заточенным и доведенным резцом. Геометрия резца также значительно влияет на величину наклепа чем больше передний угол, тем меньше наклеп.  [c.71]

На формирование механических связей оказывает влияние давление, под действием которого жидкий металл входит в контакт с твердым элементом, создаются условия для лучшего заполнения различных выступов, а также уменьшается возможность образования прерывистых зазоров. Если твердый элемент не является частью отливки, а вводится в нее для упрочнения (как арматура), то наличие прерывистых зазоров приведет к низкой внеосевой прочности (при приложении нагрузки перпендикулярно волокнам детали), понижению тепло- и электропроводности.  [c.673]

Поверхностное упрочнение металлов производят ударными волнами при использовании лазеров, генерирующих последовательности импульсов. У поверхности металла образуется слой плазмы. Плазма распространяется навстречу лазерному лучу, в результате чего рождается ударная волна. Поскольку луч представляет собой последовательность импульсов, возникает последовательность ударных волн. Воздействие волн на металлическую деталь оказывает в данном случае такое влияние, как при холодной обработке металла давлением.  [c.298]

Очевидно, избыточная энергия и увеличение объема наноструктурных материалов могут быть связаны с другими дефектами, не производящими дальнодействующих напряжений. Это прежде всего неравновесные вакансии, поры, микротрещины и свободные объемы, связанные с границами зерен. Например, концентрация неравновесных вакансий порядка 3 х 10 наблюдалась в Си на стадии V деформационного упрочнения [217]. Тем не менее скорость релаксации неравновесных вакансий очень высока и наиболее вероятно, что вклад вакансий во время дилатометрических исследований не удается зафиксировать [143]. К сожалению, в литературе отсутствуют данные о влиянии пор и микротрещин, однако можно предположить, что их роль незначительна в материалах, деформированных под высоким давлением. Следовательно, есть все основания полагать, что избыточная энергия границ зерен и изменение объема в наноструктурных материалах, полученных методами ИПД, в основном обусловлена наличием высоких внутренних напряжений неупорядоченных ансамблей дислокаций и дисклинаций.  [c.112]


Сопротивление материала пластической деформации при воздействии ударной волны определяется совместным действием процессов упрочнения и релаксации напряжений. Скорость деформации, упрочнение, величина среднего гидростатического давления и другие особенности деформирования материала оказывают влияние на реализуемый при прохождении волны закон деформирования и соответствующую ему кривую деформирования о(8). Эта кривая определяет скорость распространения ударной волны в соответствии с реальными потерями энергии на пластическое течение материала по выражению (4.25).  [c.166]

Термомеханическая предыстория материала может, по-видимому, оказывать существенное влияние и на стойкость к водородному охрупчиванию других суперсплавов [38, 118, 279, 287]. В качестве примера на рис. 42 показано влияние термообработки на листовой сплав Рене 41 [279] при термическом наводороживании в течение 1000 ч при температуре 650°С и давлении 1 атм. Необходимо отметить отрицательный эффект старения, приводящего к образованию у, а также охлаждения в печи от температуры обработки на твердый раствор (вероятно, путем образования г] на границах зерен, о чем свидетельствует межкристаллитный характер водородного разрушения [279]). В другом исследовании был обнаружен небольшой положительный эффект высокоэнергетической штамповки сплава Инконель 718 перед старением по сравнению с обычным материалом, состаренным после термообработки на твердый раствор уменьшение относительного сужения в результате выдержки в водороде при давлении 69 МПа снизилось от 72% при обычном старении до 60% в материале, подвергнутом термомеханической обработке (ТМО). Таким образом, образование у или у" после ТМО ухудшает свойства исследованных сплавов практически в такой же степени, как и в отсутствие ТМО. По-видимому, для упрочнения и повышения стойкости к KP решающее значение имеет улучшение субструктуры сплава при старении, предшествующем ТМО [160, 289]. Не исключено, что более сложные процессы обработки, включающие ТМО, позволяют добиться улучшения свойств никелевых сплавов.  [c.116]

Основной причиной износа считается хрупкое разрушение алмаза под действием возникающих в контактной зоне напряжений и микротрещин, являющихся следствием динамического и термического влияния. Износ от истирания значителен только в том случае, если алмаз неправильно ориентирован. Нельзя полностью игнорировать и износ, связанный с химическим сродством алмаза с железом, которое проявляется при высоких температурах. Чтобы уменьшить нагрев алмаза, выглаживание рекомендуется проводить при охлаждении маслом индустриальное 20, а при обработке цветных сплавов — керосином. Чтобы обеспечить более полное заполнение впадин микронеровностей и максимальное упрочнение поверхности, необходимо создать определенное удельное давление при выглаживании, при минимальной, по возможности,, общей, силе, от которой зависит деформация детали. Обеспечивается это выбором радиуса округления алмаза. Чем выше твердость материала, тем меньшим берется радиус  [c.132]

Из аналитических зависимостей для определения относительной площади касания и относительного сближения при упругом, пластическом контакте и пластическом контакте с упрочнением [57, 90] следует, что характер влияния отдельных параметров (давление, радиус закругления вершин неровностей, модуль упругости материала, его твердость, коэффициент Пуассона и параметр Ь) на фактическую площадь контакта и сближение остается постоянным. Фактическая площадь контакта возрастает с увеличением давления, радиуса закругления вершин  [c.372]

С конструктивной стороны на долговечность деталей оказывает влияние выбор материалов взаимодействующих частей, наличие или отсутствие возможности осуществления жидкостной смазки, степень равномерности распределения давления, скорость перемещения деталей и др. С технологической стороны на увеличение долговечности деталей влияют различные способы упрочнения поверхностей (например, закалка поверхностного слоя деталей токами высокой частоты, различные металлопокрытия).  [c.272]


По глубине выдавливания лунки судят о способности металла к вытяжке. Более точную оценку штампуемости стали можно получить при испытании на приборе и по методике ЦНИИТМАШа. Наряду с другими методами для оценки пригодности листового металла для глубокой вытяжки, когда условия деформирования близки к двухосному растяжению, может быть успешно использован метод гидростатической вытяжки, позволяющий фиксировать давление жидкости, служащей пуансоном, и глубину выдавливания. Этот метод. чувствителен к влиянию дефектов поверхности заготовки (рискам, царапинам, местным утонениям и т. п.). По результатам испытаний поэтому методу могут быть построены кривые упрочнения.  [c.70]

С ростом указанных критериев растут контактные давления, площадь контакта уменьшается, температурные напряжения оказывают существенное влияние на поверхностную прочность материала. Механизм и кинетика изнашивание трущихся сопряжений существенно зависят от характеристик дискретности контактирования волнистых и шероховатых поверхностей тел. Геометрическая форма поверхностей, механические свойства материалов (упругость, твердость, предрасположение материалов к упрочнению) определяют степень влияния нагрузки на фактическую площадь касания. При полной пластичности расчет фактической площади контакта сводится к соотношению  [c.158]

Влияние режимов на качество обработки зависит от свойств обрабатываемых материалов и назначения обкатки (отделочная или упрочняющая обработка). Для каждого вида упрочняющей обработки величина давления должна выбираться минимальной при отделочной обработке в зависимости от заданной чистоты поверхности, а при упрочняющей — от требуемого упрочнения.  [c.164]

Еще один легирующий элемент—азот — попадает в сталь из атмосферы. Хотя азот обычно присутствует в значительно меньшем количестве, чем углерод, действие их подобно. Азот оказывает более сильное влияние на стабилизацию аустенита и упрочнение, и определенное количество его может серьезно влиять на пластичность при низкой температуре из-за выпадения нитридов при нагреве до 200° С после холодной деформации. Это явление известно как деформационное старение. Когда азот вызывает какие-либо нежелательные эффекты, его можно связать добавками ванадия, который образует с ним нитриды. Если добавки азота улучшают важные для нас свойства, содержание его может быть увеличено. Азот можно вводить при плавлении под давлением. Кроме того, азотом можно насытить поверхностные слои стали, содержащие алюминий, в процессе азотирования в атмосфере, обогащенной азотом, такой, как атмосфера диссоциированного аммиака. Кроме того, вместе с углеродом, азот может насыщать сталь при нагреве в расплавленных цианистых солях. Эти два наиболее распространенных метода создают твердый, но тонкий поверхностный слой. Азот содержится в сталях, изготовленных с применением кислородного дутья, в небольшом количестве и может быть почти полностью удален вакуумной обработкой.  [c.51]

Таким образом, приведенные выше расчеты и опыты показывают, что образованию светлой нетравящейся (обычным способом) зоны поверхностного слоя при ЭМО способствуют следующие обстоятельства высокая скорость термического цикла (нагрев, выдержка, охлаждение) высокая скорость деформаций одновременное силовое и термическое воздействие на поверхностный слой. Глубина высокого термического воздействия должна быть соизмерена с глубиной распространения значительного давления. Многочисленные опыты глубокого электромеханического упрочнения плоских поверхностей и зубчатых колес показывают, что в тех случаях, когда глубина высокого термического влияния составляет 1. .. 2 мм, благодаря сравнительно низкой скорости обработки при невысоких давлениях структура упрочненной поверхности не имеет светлого слоя и представляет собой мелкоигольчатый мартенсит. При ВТМО среднеуглеродистых сталей получают аналогичную структуру [И].  [c.24]

При упрочнении стали 45 с повышением давления понижается как твердость, так и глубина ее распространения. Объясняется это тем, что решающее значение для стали 45 имеет термическое упрочнение поверхностного слоя, т. е. увеличение зоны высокого температурного влияния. Исходная структура обрабатываемого материала, ее состав и дисперсность оказывают заметное влияние на глубину упрочненного слоя и его твердость 153]. При обработке стали 45 с исходной сорбитной структурой упрочненный слой в 1,4 раза больше, чем при обработке при тех же режимах стали 45 перлитной структуры.  [c.27]

Влияние температуры металла на практике нельзя рассматривать в отрыве от скоростных условий деформирования. Как следует из определения горячей деформации, скорость деформирования при ней должна обеспечить полное протекание процесса рекристаллизации, скорость которой зависит от температуры. С увеличением скорости деформации при постоянной температуре увеличивается влияние упрочнения над рекристаллизационным разупрочнением и давления при той же деформации возрастают (см. рис. 3.3). Поэтому для некоторых особо чувствительных к увеличению скорости деформирования сплавов, например алюминиевых и магниевых, горячее деформирование рекомендуется осуществлять на тихоходных гидравлических прессах, а не на молотах.  [c.65]

Определяя величину сг к, надо учитывать общее деформационное упрочнение металла (влияние степени и скорости деформации, схемы нагружения, среднего гидростатического давления) и специфические условия деформации на контакте.  [c.44]

Использование сварных образцов с поперечным швом позволяет оценить наименее прочный участок сварного соединения и влияние на него контактного упрочнения со стороны основного металла или шва. Испытание же образцов с продольным швом (рис. 65, б) позволяет выявить наименее пластичный участок сварного соединения, в котором при условии совместной деформации с остальными участками наиболее вероятно начало разрушения. Так, при испытании сварных образцов с поперечным швом литых и кованых аустенитных сталей разрушение поперечных образцов проходит преимущественно по основному металлу или шву и лишь при большой длительности переходит в околошовную зону, а при продольных образцах на всех стадиях испытания разрушению предшествует массовое образование трещин в этом участке. Если основной металл или шов обладает низкой длительной пластичностью, то такие зародышевые трещины могут привести к снижению общего уровня длительной прочности. Кроме того, испытания образцов с продольными швами позволяют оценить длительную прочность сварных соединений типа кольцевых стыков труб или сосудов, работающих под внутренним давлением, у ко-  [c.111]


Комбинированное воздействие на рабочий объем образца осевой силой (растяжение-сжатие), крутящим моментом и внутренним давлением позволяет получить широкий диапазон напряженных состояний с различными соотношениями главных напряжений и ориентацией этих напряжений относительно оси образца. Этот метод дает возможность вести исследования механического поведения материалов при плоском напряженном состоянии влияние вида напряженного состояния на закономерности сопротивления деформированию и разрушению условий предельного перехода (по текучести и прочности) и закономерностей упрочнения материала с позиций теорий пластичности и др.  [c.309]

В работе [703 ] изучено влияние никеля и хрома (4,5—6,5% Ni, 15,6 17,8% Сг и 0,07—0,13% G) на изменение механических свойств стали после различных вариантов обработки закалки, холодной прокатки при —60 до 94 и 180° С, комнатной температуре и в подогретом состоянии. Показано, что упрочнение сталей указанных составов тем больше, чем ниже содержание никеля, чем ниже температура прокатки (рис. 167), что связано с превращением метастабильного аустенита в мартенсит в процессе обработки давлением. Значения температуры превращения, т. е. Mg, могут в какой-то степени служить критерием упрочнения метастабильного аустенита. Максимальное упрочнение для этих сталей соответствует более полному превращению Y  [c.310]

Влияние плотности тока i при ЭМО переменным током образцов из сталей 45 и 40ХН на параметры шероховатости Ra Rp, Sm, tm волнистости tVp и степень упрочнения Uh представлено в табл. 25. Зависимость шероховатости от давления инструмента на поверхность детали имеет экстремальный характер. Поэтому необходима экспериментальная оптимизация значения давления при совокупности влияния остальных факторов. Влияние давления q ролика на деталь при ЭМО образцов из сталей 45 и 40ХН на геометрические параметры поверхностного слоя представлено в табл. 26.  [c.559]

При давлении 4 кбар и комнатной температуре проводились испытания монокристаллов галогенидов щелочных металлов (КС1, Na l, КВг, KI, Rbl, sBr, LiF) [80]. В то время как в монокристаллах, подвергнутых упрочнению путем облучения (течение в которых по предположению контролируется упругим взаимодействием дислокаций), действительно наблюдалось увеличение напряжения течения, сравнимое с увеличением модуля сдвига, поведение неупрочненных кристаллов было беспорядочным. Прямые измерения подвижности дислокаций в кристаллах КС1 под давлением методом ямок травления [165] не обнаружили заметного влияния давления на скорость дислокаций, что находится в явном противоречии с данными [80] о значительном влиянии давления на напряжение течения. Такое влияние оказалось пренебрежимо малым при сжатии монокристаллов MgO вдоль оси [100] ПОД давлением 10 кбар [15]. В целом Проведенные до сих пор эксперименты не позволяют сделать однозначного вывода. Возможно, причинами это-  [c.174]

Обозначения Р — усилие калибровки, кгс Р — усилие прижима, кгс, составляющее (0,250.3) В — ширина полосы (длина линии изгиба), мм / — расстояние между опорами при угловой гибке, мм п == 1,8 — коэффициент, характеризующий влияние упрочнения р — давление калибровки (правки), кгс/мм (по табл. 24) / — площадь калибруемой. -аготорки (под пуансоном), мм / 1 — коэффициент для свободной гибки, находимый по табл. 24 /сг — коэффициент для двухугловой гибки, приведенный в табл. 25.  [c.72]

ООО а1) возрастание сопротивления с повышением давления. Темп-рный коэф. электрич. сопротивления практически не изменяется под влиянием давления. При пластич. деформации М. в холодном состоянии уд. сопротивление возрастает вместе со степенью обработки. Это возрастание электрич. сопротивления обусловлено повидимому искажениями пространственной решетки, искривлением ее отдельных участков и также появлением в ней пустот по Смекалу т. е. отсутствием в отдельных местах решетки одного или нескольких атомов. При нагреве холодно-деформированного М. электрич. сопротивление сначала падает, а потом при более высоких г° возрастает. Фиг. 18 показывает изменение электрич. сопротивления упрочненной медной проволоки при нагреве здесь 1 — проволока с диам. 0,3 мм к 2 — с диам. 0,4 мм. Падение сопротивления начинается уже при 1° возврата, т. е. еще до начала рекристаллизации. Подъем сопротивления после начала рекристаллизации по Тамману объясняется появлением микропор на границах вновь образовавшихся кристаллитов.  [c.408]

Ройер Р, Влияние показателя деформационного упрочнения и концентрации напряжений на характер разрыва сосудов давления // Теоретические основы инженерных расчетов Тр. амер. об-ва инженеров-механиков — Т.96  [c.265]

Атомы, расположенные на поверхности, с внешней стороны имеют свободные связи, и поэтому соприкосновение ювенильной металлической поверхности с окружающей средой при атмосферном давлении приводит к мгновенному образованию на ней мономолекулярного слоя. Физическое состояние поверхности трения твердого тела характеризуется наличием определенного состава поверхностных пленок и особенностями структуры поверхностных слоев. В реальных условиях на воздухе все микровыступы и микротрещины почти м1новенно, от сотых до тысячных долей секунды, покрываются оксидн1,1ми пленками а слоями адсорбированных молекул газов, воды и жирных веп еств. Обычно над ювенильной поверхностью находятся слои оксидов, прочно связанн ,1е с металлом. Эти пленки влияют как на деформационное упрочнение, так и на хрупкое разрушение, причем по-разному при различных температурах и степнях деформации, что часто не учитывается современными теориями. Совершенно очевидно влияние этих пленок на  [c.58]

Причина этих явлений — воздействие кислорода, приводящее к упрочнению алюминия его оксидами даже при небольщом остаточном давлении (10 Па). При высоких температурах упрочняющее влияние оксидов четко выявляется и при кратковременных испытаниях на растяжение фольги и тонкой проволоки.  [c.52]

На основании общих физических представлений о поведении материала под нагрузкой его сопротивление деформированию определяется мгновенными условиями нагружения (температурой, скоростью деформации и другими ее производными в момент регистрации), а также структурой материала, сформированной в процессе предшествующего деформирования, который в п-мерном пространстве характеризуется траекторией точки, проекции радиуса-вектора которой — составляющие тензора напряжений (или деформаций) и время (начальная температура является параметром, характеризующим исходное состояние материала, и изменяется в соответствии с адиабатическим характером процесса деформирования). Специфической особенностью процессов импульсного нагружения является сложный характер нагружения (составляющие тензора напряжений меняются непропорционально единому параметру) и влияние времени. Невозможность экспериментального исследования материала при различных процессах нагружения (траекториях точки указанного выше л-мерного пространства) вынуждает исследователей использовать упрощенные модели механического поведения материала. Это обусловило развитие исследований по разработке теорий пластичности, учитывающих температурновременные эффекты [49, 213, 218] наряду с изучением физических процессов скоростной пластической деформации [5, 82, 175, 309]. Так, для первоначально изотропного материала исходя из гипотезы изотропного упрочнения связь тензоров напряжений и деформаций полностью определяется связью их инвариантов соответственно Ei, Ег, Ез и Ii, h, h- С учетом упругого характера связи средних напряжений и объемной деформации для металлических материалов (а следовательно, независимость от истории нагружения первых инвариантов тензоров напряжений и деформаций Ei, А) процесс нагружения определяется связью четырех оставшихся инвариантов и величины среднего давления. В классической теории пластичности  [c.11]


Наибольшее влияние на степень упрочнения при накатке имеет давление ролика или шарика на обрабатываемую поверхность. При накатке шлифованных образцов из стали 40 при давлении 20 кгс/см усталостная прочность повысилась на 15%, а при давлении 40 кгс/мм — на 23%. Максимальное давление при накатывании р = (1,8-ь2,1) стт кгс/мм , где От—предел текучести обрабатываемого Материала. Чрезмерно высокое давление при накатывании, так же как и слишком малая подача и, особенно, увеличение числа проходов могут привести к перенаклепу, шелушению поверхности и снижению напряжений в поверхностном слое.  [c.108]

Термическая обработка и поверхностное упрочнение ведущих деталей также приводит к сокращению веса машин. Примером влияния упрочняющей технологии на размеры детали и всей машины может служить использование накатки поверхности эксцентрикового вала механического пресса давлением 4000 т на НКМЗ. Накатка шеек эксцентрика и галтелей позволила уменьшить диаметры вала на 25%.  [c.184]

Для получения высокой окалиностойкости никель легируют хромом ( 20%), а для повышения жаропрочности — титаном (1,0—2,8 %) и алюминием (0,55—5,5 %). В этом случае при старении закаленного сплава образуется интерметаллидная у -фаза типа Nig (Ti, Al), когерентно связанная с основным у-раствором, а также карбиды Ti и нитриды TiN, увеличивающие прочность при высоких температурах. Дальнейшее увеличение жаропрочности достигается легированием сплавов молибденом и вольфрамом, повышающими температуру рекристаллизации и затрудняющими процесс диффузии в твердом растворе, который необходим для коагуляции избыточных фаз и рекристаллизации. Добавление к сложнолегированным сплавам кобальта еще больше увеличивает жаропрочность и технологическую пластичность сплавов. Для упрочнения границ зерен у-раствора сплав легируют бором и цирконием. Они устраняют вредное влияние примесей, связывая их с тугоплавкими соединениями. Примеси серы, сурьмы, свинца и олова понижают жаропрочность сплавов и затрудняют их обработку давлением. В связи с этим для повышения жаропрочности при выплавке жаропрочных сплавов необходимо применять возможно более чистые шихтовые материалы, свободные от вредных легкоплавких примесей.  [c.310]

Изготовители суперсплавов хорошо понимают, что для придания материалам качеств, удовлетворяющих сегодняшний рынок, необходимо комбинировать процессы выплавки. В силу сложившихся обстоятельств на комбинации процессов вакуумной индукционной выплавки и вакуумно-дугового переплава остановился выбор в Соединенных Штатах. Комбинацией вакуумной индукционной выплавки с процессом электрошлакового переплава завершился поиск путей производства суперсплавов с твердорастворным упрочнением. Появление дефекта в виде белых пятен в материалах вакуумной индукционной выплавки с вакуумно-дуговым переплавом и накопление сведений о влиянии неметаллических включений на качество продукции привело к производству материалов "тройной выплавки эти материалы предназначались для использования в высокоответственных деталях — дисках турбины высокого давления [7]. Три процесса были скомбинированы в последовательности вакуумная индукционная выплавка - электро-шлаковый переплав — вакуумно-дуговой переплав цель комбинации — свести к минимуму уровень загрязненности по включениям и, может быть, избавиться от белых пятен. Задача была решена в разумных пределах, получили материал со сниженной загрязненностью и улучшенными характеристиками малоцикловой усталости. Стоимость материала "тройной выплавки ограничила масштабы его применения.  [c.159]

Сварные соединения хромомолибденованадиевых сталей снижают свою жаропрочность вследствие появления мягкой прослойки на участке зонь термического влияния, нагреваемом при сварке в межкритическом интервале температур. Наличие этой мягкой прослойки, иногда называемой белой полоской [82], может приводить (п. 7) к снижению уровня длительной прочности и пластичности, вызывая преждевременное разрушение сварного стыка. Макро- и микроструктуры разрушения такого рода в тройнике высокого давления из стали 12Х1МФ, проработавшем 17 тыс. ч при температуре 565° С, показаны на рис. 103. Возникшая трещина имеет межзеренный характер и расположена преимущественно на участке межкритического интервала на расстоянии 2 мм от границы сплавления. Начало этой трещины не зафиксировано, так как шлиф вырезался уже после предварительной выборки трещины на станции. На развитие разрушений в мягкой прослойке существенное влияние оказывает исходная прочность стали и относительная ширина прослойки, определяющая эффект контактного упрочнения.  [c.185]

Анализируя приведенные данные, можно отметить, что если исходить лишь из условий работы кольцевых стыков под внутренним давлением, то при сохранении высокой длительной пластичности длительная прочность шва или другой мягкой прослойки может быть на 20—30% ниже прочности самой стали. Безаварийная работа большого числа кольцевых стыков паропроводов из сталей 12Х1МФ и 15Х1М1Ф, сваренных электродами типа Э-ХМФ, подтверждает это положение. В то же время нельзя не учитывать, что отдельные кольцевые стыки, расположенные у жестких узлов типа корпусов арматуры, у донышек, а также швы сварных тройников подвержены воздействию значительных дополнительных осевых напряжений изгиба, являющихся для этих соединений уже рабочими. В этих условиях пониженная прочность шва или разу-прочненного участка зоны термического влияния может приводить, как это и показывает опыт эксплуатации, к появлению преждевременных разрушений стыков на слабом участке. Вероятность их растет с повышением исходной прочности стали, когда контрастность свойств основного металла и мягкой прослойки наиболее велика. Можно считать, что в таких соединениях разница в уровне прочности стали и мягкой прослойки не должна превышать 10— 15%. Весьма существенным является запас пластичности малопрочного участка, величина которого определяет его работоспособность при контактном упрочнении.  [c.189]

Очевидно уменьшение шероховатости и упрочнение поверхности в процессе приработки повышает сопротивление усталости деталей. Если шероховатость поверхности во время приработки ухудшается, поверхностный слой разупрочняется, в нем появляются остаточные растягиваюш,ие напряжения или убывают по абсолютной величине исходные напряжения сжатия, то сопротивление усталости деталей уменьшается. Влияние износа на прочность при повторно-переменных нагрузках может, таким образом, быть как отрицательным, так и положительным. Это подтверждено исследованиями Д. А. Драйгора и В. Т. Шарая на ряде режимов трения скольжения. К сожалению, опытных данных недостаточно, чтобы применительно к конкретным машинам с характерными для их узлов скоростями скольжения и материалами пар трения указать давления, при которых их положительное влияние будет наибольшим, а также давления, начиная с которых пластическая деформация поверхностного слоя на приработке будет сопровождаться разрыхлением структуры. Однако некоторые режимы трения легко оценить по их влиянию на прочность.  [c.254]


Смотреть страницы где упоминается термин Упрочнение Влияние давления : [c.85]    [c.87]    [c.154]    [c.454]    [c.163]    [c.197]    [c.337]    [c.13]    [c.881]    [c.394]    [c.92]    [c.157]    [c.251]   
Несущая способность и расчеты деталей машин на прочность Изд3 (1975) -- [ c.151 ]



ПОИСК



Давление влияние

Упрочнение

Упрочнение Влияние среднего контактного давления



© 2025 Mash-xxl.info Реклама на сайте