Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Старения эффекты

Помимо скорости нагрева до температуры искусственного старения, эффект добавок серебра на прочность зависит от скорости закалки [149, 172, 173]. Особенно добавки серебра увеличивают чувствительность к закалке сплавов типа 7075, содержащих либо хром, либо марганец [149]. В то же время добавки серебра к сплавам типа 7075, не содержащим хром и марганец, но содержащим цирконий, могут незначительно увеличивать прочность даже при очень медленных скоростях закалки (1,1 °С/с) [149]. Так как только высокой прочности недостаточно, требуется перестаривание. После этого достигается соответствующее сопротивление КР легированных или нелегированных серебром сплавов типа 7075, содержащих хром, марганец или цирконий.  [c.264]


Данные табл. 14 и 15 и рис. 22 показывают, что при равномер-ных пластических деформациях от 4% и более и месячном естественном старении эффект Баушингера этой стали остается неизменным и выражается в уменьщении предела текучести на сжатие на 10—11 % его исходного значения Os.  [c.44]

Предварительная холодная прокатка уменьшает эффект динамического деформационного старения (рис. 94). Предварительная прокатка при температурах динамического деформационного старения эффекта не уменьшает (рис. 95), при последующей деформации растяжением он оказывается по абсолютной величине примерно таким же, как для нормализованной стали. Это говорит о том, что субструктура стали (плотность и распределение дислокаций, концентрация точек закрепления дислокационных линий) после холодной прокатки и прокатки при температурах динамического деформационного старения неодинакова. Из приведенных данных также следует, что многократная (дробная) деформация при тем-  [c.236]

При данном напряженном состоянии выпавшие частицы вызывают появление внутренней концентрации напряжений. Это означает, что в процессе старения эффект внутренней концентрации напряжений усиливается.  [c.164]

Деформационное старение. Эффект старения металла заключается в снижении характеристик пластичности (например, относительного удлинения) и повышении характеристик прочности (временное сопротивление, предел текучести, твердость). В результате старения металл становится менее пластичным, хрупким.  [c.14]

Кривые, приведенные на рис. 418, показывают, как изменяется твердость сплавов А1 — Си в зависимости от содержания меди. Эффект старения, т. е. разница в твердости между свежезакаленным и состаренным состояниями (верхняя кривая на диаграмме), постепенно возрастает с увеличением содержания меди сплав с 2 /о Си и менее практически не стареет, так как пересыщение еще недостаточно, чтобы вызвать при старении существенное изменение свойств.  [c.575]

Работоспособность конструктивных элементов оборудования представляет собой очень широкое и комплексное понятие, охватывающее возможность выполнять свои рабочие функции без разрушений и аварий в течение длительного, но определенного и ограниченного времени. При этом должна быть обеспечена безопасность и надежность эксплуатации, соответствующая объектам такого ответственного назначения, как сосуды и аппараты, работающие под внутренним давлением. При оценке работоспособности конструктивных элементов аппаратов необходимо опираться на данные о реальной их дефектности и данные о реальных механических характеристиках металла с учетом эффектов старения. Диагностическое оборудование должно давать возможность производить измерения всех основных параметров повреждаемости, определяющих работоспособность элементов. Необходимо иметь методы, позволяющие оценивать работоспособность по данным о дефектах, свойствах металла в процессе эксплуатации, параметрах нагруженности с учетом перепадов давления, состояния коррозионной защиты и др.  [c.277]


Основное свойство времени - это его трансформация в энергию при взаимодействии с пространством. Возможно обратимое выделение времени при насыщении пространства энергией, что чрезвычайно важно в обоих случаях происходит изменение мерности пространства. Доказательства этого очевидны. Например, внесение тепловой энергии в химический реактор ускоряет время протекания реакции. При замораживании, то есть при отборе тепловой энергии, процессы распада, старения и диссипации замедляются (эффект холодильника).  [c.46]

При высокотемпературном нагреве композитов (800 С) обнаружен эффект старения, проявляющийся в росте Оо на 20—80% и снижении электросопротивления на 10%.  [c.200]

Существенную роль в образовании хрупкого разрушения играет исходное состояние металла, зависящее от металлургических процессов получения и технологии его дальнейшей обработки. Увеличение размера зерен и ослабление прочности их границ приводит к уменьшению 5к и, следовательно, к повышению критической температуры и снижению уровня критических напряжений при хрупком разрушении (см. рис. 1.5). Повышение сопротивления срезу и уменьшение сопротивления отрыву в результате повышения содержания углерода в стали, понижения температуры отпуска, а также легирования (повышающего отношение предела текучести 5т к сопротивлению разрыву Sk) увеличивают склонность к хрупкому разрушению. Этот эффект наблюдается также после деформационного старения при длительной службе металла в напряженном состоянии при повышенной температуре, наводороживания, радиационного воздействия, накопления циклического и коррозионного повреждений. Указанные эксплуатационные факторы понижают пластичность, прочность границ зерен и сопротивление разрыву.  [c.14]

Продолжающийся нагрев приводит к коагуляции (укрупнению) 0-фазы. Каждая из указанных стадий не зависит от предшествующих, и они могут накладываться друг на друга и протекать независимо друг от друга. Протекание той или иной стадии искусственного старения зависит от состава сплавов А1—Си и температуры процесса например, при содержании 2% Си и 220° С первой образуется 0 -фаза, в то время как 0"-фаза возникает первой при старении сплава, содержащего 4% Си при 190° С. Таким образом, последовательность образования фаз определяется кинетикой, а не образованием каждой фазы из предшествующей. У некоторых сплавов (например, у магнитотвердых сплавов системы Fe—Ni—А1 типа алии) твердый раствор в определенных условиях охлаждения распадается частично в процессе закалки. При этом образуется ряд неустойчивых промежуточных фаз, что способствует увеличению магнитной энергии. Максимальное упрочнение при искусственном старении связано с начальными стадиями старения. Образование 0-фазы приводит к постепенному разупрочнению сплавов. Чем выше температура старения, тем быстрее достигается упрочнение, но тем меньше его эффект и быстрее происходит разупрочнение. Искусственное старение заканчивается В течение нескольких часов.  [c.111]

Одним из главнейших факторов, приводящих к упрочнению стареющих сплавов ряда цветных металлов, является выпадение в процессе старения мелкодисперсных выделений второй фазы (после закалки). Это явление получило название дисперсионного твердения. В процессе выпадения второй фазы сопротивляемость пластическому течению сначала растет с увеличением размера выделений, а затем начинает снижаться. Максимум упрочнения при этом в большинстве случаев соответствует среднему расстоянию между частицами около 1000 А [11]. Наиболее ярким примером сплавов, обнаруживающих дисперсионное твердение, являются алюминиевые сплавы. У этих сплавов эффект упрочнения зависит главным образом от размера дисперсных частиц. Влияние этого фактора было рассмотрено в гл. I при анализе структурных факторов, вызывающих упроч нение металлов.  [c.94]

За последние годы были опубликованы исследования, в которых показано, что данный эффект упрочнения алюминиевых сплавов может быть существенно повыщен, если старению предшествует предварительная деформация закаленного сплава [145—154]. Эти исследования легли в основу нового метода упрочнения стареющих легких сплавов, проводящегося по схеме  [c.94]


Во-первых, упругие свойства наращиваемого тела вызывают приращение напряжений одновременно во всех элементах наращиваемого тела при приращении внешней нагрузки. Во-вторых, ползучесть материала приводит к передаче части усилия от ранее рожденных элементов на вновь рожденные. Наконец, старение материала приводит к возрастной неоднородности, состоящей в большей жесткости (меньшей деформативности) ранее зародившихся элементов по сравнению со вновь рожденными, что уменьшает процесс разгрузки ранее рожденных элементов. Первый фактор объясняет увеличение максимального напряжения при учете последовательности возведения — загружения по сравнению со слу-, чаем загружения массива после его возведения. Второй эффект проявляется на временах порядка времени ползучести материала и усиливается при увеличении времени возведения. При малых временах возведения, когда ползучесть материала не успевает проявиться, решение вязкоупругой задачи наращивания стремится к решению задачи упругого наращивания. При увеличении времени возведения увеличивается эффект разгрузки первого родившегося элемента 0 = 0, и величина Р Т, 0) уменьшается от 1 94 при Г —> о до 0,941 при Г = 40 сут. При дальнейшем увеличении времени Г увеличение жесткости элемента 0=0 по сравнению с позднее рожденными элементами в силу увеличения разности возрастов приводит, как видно йз таблицы, к увеличению величины Р Т, 0).  [c.101]

Результаты расчетов показывают, что учет неоднородности старения приводит к следующим эффектам  [c.141]

Д. Влияние окружающей среды и эффекты старения......129  [c.102]

Так же как и для рассмотренного выше случая обратимых тепловых эффектов, это влияние факторов окружающей среды и старения можно учесть при помощи переходных проводимостей в общем случае и функций ползучести и релаксации в частности, а также при помощи модификации выражения обусловленной напряжением деформации при тепловом расширении или сжатии. Например, осевая деформация при одноосном напряженном состоянии в общем случае дается уравнением (38), если функция определяется на образцах с учетом всех факторов.  [c.129]

С целью улучшения качества поверхности штампуемых изделий, избежания брака в виде полос деформации, листовую сталь подвергают предварительной обработке в штамповочных цехах тройному или многократному перегибу в листо-правильных машинах (вальцовке) или растяжению за пределами текучести на раст яжных машинах, а на металлургических заводах — дрессировке , т. е. холодной прокатке с обжатиями в пределах 0,5—3%. Эти виды обработки приводят к наклепу металла и к значительному выравниванию разницы по пределу текучести отдельных зерен. Однако поеле такой обработки длительное хранение листов и ленты не рекомендуется, так как с течением времени в связи с происходящими в металле процессами старения эффект от наклепа уменьшается или исчезает полностью (рис. 6).  [c.71]

Введение марганца повышает и эффект закалки и эффект старения. Эффект закалки проявляется при содержании в сплавах марганца начиная с 0,2 и до 0,6%, эффект старения достигает максимума при 0,4% Мп, а затем снижается. Максимум эффекта старения имеет место при меньших концентрациях марганца, чем максимум эффекта закалки. Введение марганца оказьшает примерно одинаковое влияние на изменение эффекта закалки и эффекта старения — максимальный прирост эффекта закалки равен 5,9 кГ1мм , а эффекта старения 5,2 кПмм .  [c.150]

Термообработка. Т к. растворимость почти всех составляющих известных в технике М. с. в основном твердом растворе меняется с изменением то возможно проведение упрочняющей термообработки (закалки и старения). Эффект упрочнения естественно зависит от процентного содержания тех или иных составляющих и при малых количествах алюминия и цинка весьма слабо выражен. Поэтому применение упрочняющей термообработки целесообразно, когда содержание алю.миния в сплаве превышает 6%, а цинка — 2%. Опыты показали, что для перевода составляющих в твердый раствор М. о. требуют более длительных периодов нагрева перед вакалкой, чем алюминиевые сплавы. Если маисимальная продолжительность нагрева деформированных алюминиевых сплавов перед закалкой выражается I—2 часами, то для М. с. рекомендуются периоды нагрева порядка 12—24 час. при 1° 350—400°. Эффект упрочнения после закалки и естественного старения у всех М. с. незначителен Заметное упрочнение сплавов возможно лишь путем применения искусственного старения после закалки, вызывающего высокодисперсный распад твердого раствора, Темп-ры старения рекомендуются в пределах 150- 200° при продолжительности от 12 ч. до нескольких суток (табл. 6) В табл, 9 приведены нек-рые данные, характеризующие влияние различных методов обработки на упрочнение М с.  [c.177]

В низкоуглеродистых сталях и других деформационно стареющих материалах наблюдается четкий предел выносливости, т. е. ниже некоторого значения приложенного напряжения усталостная долговечность образцов неограниченно велика. Важность деформационного старения подтверждается так называемым эффектом тренировки образец в течение длительного времени подвергают циклическому нагружению при напряжениях ниже предела выносливости, после чего его усталостная долговечность существенно повышается благодаря увеличению напряжения течения в результате деформационного старения. Ранее считалось, что предел выносливости является характери-ристикой, отражающей сопротивление материала зарождению разрушения (т. е. зарождению усталостной трещины). В настоящее время взгляд на предел выносливости несколько трансформировался. Показано, что усталостная трещина может зарождаться и прорастать через поверхностные слои образца при напряжениях меньше предела выносливости, но не развивается в глубь образца и не приводит к разрушению [263, 423]. Таким образом, наличие предела выносливости не является следствием невозможности зарождения трещины, а скорее неспособности ее распространения в материале при данном уровне напряжений [152]. Данная закономерность позволяет связать предел выносливости с пороговым значением коэффициента интенсивности напряжений AKth, характеризующим отсутствие развития трещины при АК < А/Сгл- Указанный подход был нами использован при прогнозировании влияния асимметрии нагружения на предел выносливости. Подробное изложение полученных по данному вопросу результатов будет приведено в подразделе 4.1.4.  [c.128]


К числу упрочняющих факторов относятся процессы тренировки материала действием кратковременных Напряжении, превосходящих предел текучести деформационное упрочнение, вызываемое структурными изменениями в напряженных микрообъемах материала самопроизвольно протекающие процессы старения, сопровождающиеся кристаллической перестройкой материала и рассеиванием внутренних напряжений. Положительно влияет приспособляемость конструкции — общие плИ местные Пластические дефор.мапии, возникающие под действием Перегрузок п вызывающие перераспределение нагрузок. Определенный упрочняющий эффект дает износ первых стадий (сглаживание микронеровностей), способствующий увеличению фактической площади контактирующих поверхностей, снижению пиков давлений и выравниванию нагрузки на поверхности.  [c.150]

Охрупчивающий эффект деформационного старения сказывается на ударной вязкости K V трубной стали и ее составляющих K V3 (зарождения трещины) я K Vp (распространения трещины). Наиболее четко эффект старения металла длительно эксплуатированных нефтепродуктов просматривается по относительной протяженности разрушения. Примерно до 10 лет эксплуатации протяженность разрушений сохраняет постоянное значение. При t > 10 лет отмечается значительное увеличение протяженности разрушения.  [c.367]

Механизм упрочнения при старении сплавов различных систем состоит в том, что зоны предвыделений и образующиеся дисперсные частицы, имея по сравнению с матрицей различные упругие свойства, создают поля напряжений, взаимодействующие с дислокациями. В результате движение дислокаций через кристалл затормаживается и деформация сплава затрудняется с другой стороны, дисперсные частицы оказывают также сопротивление переползанию дислокаций (см. рис. 58). Например, у магнитотвердых сплавов структура, возникающая на различных стадиях старения в системе Fe—Ni—Al, способствует увеличению коэрцитивной силы, поскольку зоны предвыделений и области дисперсных выделений, будучи соразмерными с величиной доменов, задерживают переориентацию стенки Блоха в процессе перемагничи-вания сплава. Эффект старения наблюдают и используют не только в системах цветных сплавов (на основе алюминия, магния, титана, никеля), но и в сплавах на основе железа и, в частности, у стали, содержащей  [c.112]

В общем случае вязко-упругий материал может иметь свойства памяти напряжений (эффект Кольрауша). Существует наследственная теория ползучести (старения), разработанная акад. Ю. Н. Работновьш, например, для бетона и других материалов.  [c.110]

Электрохимический пробой. Электрохимический пробои элек1ротехнических материалов имеет существенное значение при повышенных температурах и высокой влажности воздуха. Этот вид пробоя наблюдается при постоянном и переменном напряжениях низкой частоты, когда в материале развиваются процессы, обуою-влипающие необратимое уменьшение сопротивления изоляции (электрохимическое старение). Кроме того, электрохимический пробой может иметь место при высоких частотах, если в закрытых порах материала происходит ионизация газа, сопровождающаяся тепловым эффектом и восстановлением, например в керамике, оксидов металлов переменной валентности  [c.72]

Данное общее положение относится не только к титановым сплавам, но и кО всем другим металлическим системам. Например, в мартенситно-стареющей стали в процессе старения обнаружили с помощью эффекта Мессбауэра предвьщеления (РеМО Мо [11] в твердом растворе алюминиевого сплава обнаружены молекулярные комплексы в алюминиевых сплавах систем А1—Мд —3 и А1 —Мд —  [c.17]

Ниже излагается количественная теория роста усталоствых трещин с учетом эффектов локального старения материала  [c.52]

Механические свойства композиционных материалов и их составных частей меняются под влиянием окружающей среды и химического старения, особенно при изменении температуры н под действием воды (водяных паров) на полимерные композиты (см., например, Фрид [33], Стил [111], Цай [118]). Такие эффекты часто необратимы и приводят к изменению свойств материала со временем. Мы интересуемся здесь только способом, которым можно учесть эти влияния в определяющих уравнениях вязко-упругого материала. Детальное обсуждение физического и химического механизмов, приводящих к подобным изменениям, а также математическое их описание остаются вне рамок настоящей главы.  [c.129]


Смотреть страницы где упоминается термин Старения эффекты : [c.160]    [c.161]    [c.70]    [c.353]    [c.394]    [c.470]    [c.575]    [c.110]    [c.318]    [c.328]    [c.329]    [c.330]    [c.332]    [c.358]    [c.255]    [c.39]    [c.47]    [c.105]    [c.109]    [c.73]    [c.45]   
Механика композиционных материалов Том 2 (1978) -- [ c.129 ]



ПОИСК



С самоуплотнения эффект старение материалов

Старение

Эффект Баушингера стали 3 при пути нагружения растяжениесжатие и промежуточном естественном старении



© 2025 Mash-xxl.info Реклама на сайте