Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Экспериментальная оптимизация

Ограничения налагаются в виде неравенств (односторонние или двусторонние) на частоту вращения, подачу, силу резания, мощность, шероховатость поверхности, точность размера. Дальнейшая алгоритмизация уравнений состава приводит к разработке модели, а ее формализация — к рабочим программам на ЭВМ. Математические модели могут уточняться дополнительным проведением экспериментальной оптимизации.  [c.102]


Материально-техническое обеспечение базируется на использовании ЭВМ и технических устройств (стендов, приборов) для испытаний продукции. При этом работы по экспериментальной оптимизации могут проводиться на предприятиях, разрабатывающих и производящих продукцию, а также на испытательных станциях и полигонах.  [c.122]

Общие положения. Особенность экспериментальной оптимизации состоит в том, что конкретный вид зависимостей, формирующих множество допустимых значений параметров и условий функции, неизвестен, тогда как применение теоретических методов требует предварительных определений этих зависимостей. Экспериментальная оптимизация проводится на реальном изделии, макете или физической модели, в отличие от теоретической оптимизации, основу которой составляет исследование соответствующей математической модели [30].  [c.133]

При проведении экспериментальной оптимизации необходимо различать два случая  [c.133]

Процесс экспериментальной оптимизации изделий включает следующие процедуры изучение изделия  [c.133]

При проведении экспериментальной оптимизации экспериментальные работы осуществляют на основе математической теории планирования эксперимента. Планирование эксперимента представляет собой процедуру выбора условий проведения опытов и установления их количества, а также выбора методов статистической обработки результатов эксперимента и принятия решений.  [c.134]

Рис. 4.3. Схема экспериментальной оптимизации Рис. 4.3. Схема экспериментальной оптимизации
Дать понятие об экспериментальной оптимизации ПОС. Что составляет методическую основу экспериментальной оптимизации  [c.151]

Методы экспериментальной оптимизации и управления  [c.476]

Необходимо продолжать расчетно-экспериментальные исследования влияния критерия Рг и температурного фактора на теплообмен, оптимизацию параметров шаровых твэлов и конструктивных вариантов активных зон разрабатываемых реакторов ВГР и БГР.  [c.107]

Открытие вихревого эффекта и его последующее изучение неразрывно связаны с экспериментальным усовершенствованием конструкций вихревых труб, направленным на повышение его интегральных термодинамических характеристик аГ , ЛТ , л, и Все экспериментальные работы, посвященные исследованию вихревого эффекта, можно отнести к одной из двух фупп повышение эффективности вихревых труб оптимизацией формы камеры энергоразделения, соплового ввода и конструктивных размеров, определенно влияющих на термодинамику процесса энергоразделения  [c.49]


Иначе дело обстоит с решением вариационных задач газовой динамики и с точными решениями уравнений Навье—Стокса. Эти результаты своеобразно и тесно переплетены с численными и экспериментальными исследованиями. Решение краевых задач при оптимизации формы тел в сверхзвуковом потоке газа первоначально проводилось численно, итерационным путем. Обращение в нуль одной из рассчитываемых функций подсказало путь аналитического решения и открыло путь к исследованию необходимых условий минимума и к получению новых решений. При использовании этих результатов для практики в потоках внутри сопел рассчитывался пограничный слой, а результирующая сила тяги была проверена на специальной опытной установке. Расхождение между расчетной силой тяги и ее экспериментальной величиной не превысило 0,1%.  [c.5]

При конструировании необходимо выявить функциональные параметры, от которых главным образом зависят значения и допускаемый диапазон отклонений эксплуатационных показателей машины. Теоретически и экспериментально на макетах, моделях и опытных образцах следует установить возможные изменения функциональных параметров во времени (в результате износа, пластической деформации, термоциклических воздействий, изменения структуры и старения материала, коррозии и т. д.), найти связь и степень влияния этих параметров и их отклонений на эксплуатационные показатели нового изделия и в процессе его длительной эксплуатации. Зная эти связи и допуски на эксплуатационные показатели изделий, можно определить допускаемые отклонения функциональных параметров и рассчитать посадки для ответственных соединений. Применяют и другой метод используя установленные связи, определяют отклонения эксплуатационных показателей при выбранных допусках функциональных параметров. При расчете точности функциональных параметров необходимо создавать гарантированный запас работоспособности изделий, который обеспечит сохранение эксплуатационных показателей к концу срока их эксплуатации в заданных пределах. Необходимо также проводить оптимизацию допусков, устанавливая меньшие допуски для функциональных параметров, погрешности которых наиболее сильно влияют на эксплуатационные показатели изделий. Установление связей эксплуатационных показателей с функциональными параметрами и независимое изготовление деталей и составных частей по этим параметрам с точностью, определенной исходя из допускаемых отклонений эксплуатационных показателей изделий в конце срока их службы, — одно из главных условий обеспечения функциональной взаимозаменяемости.  [c.19]

Благодаря идеям оптимального планирования точек испытаний, анализ факторов регрессионных моделей является достаточно универсальным средством не только для экспериментального изучения и оптимизации малоизвестных явлений, но и для аппроксимации сложных функций многих переменных с минимальной затратой усилий.  [c.97]

При прогнозировании показателей качества продукции в некоторых случаях целесообразно сочетать теоретические и экспериментальные методы прогнозирования (оптимизации). В этом случае прогноз представляется в виде математических формул и одновременно в виде макета.  [c.82]

Закономерности явлений, определяющие рабочий процесс машины или аппарата, которые выявлены на основе теоретических или экспериментальных исследований, могут быть использованы для оптимизации конструктивных и режимных параметров разрабатываемых реальных аппаратов. Наивыгоднейшее сочетание параметров может быть найдено и экспериментальным путем на основе теории оптимального планирования эксперимента. Для отыскания экстремума критерия оптимальности конструкции разработан ряд методов (например, симплексный метод, метод наискорейшего спуска и др.), которые реализуются с помощью ЭВМ.  [c.8]

Все перечисленные способы не исключают друг друга и могут быть применены в гидроприводе одновременно. Однако наиболее простым из них является оптимизация длины и диаметра всасывающего трубопровода. Экспериментальными исследованиями установлено, что для исключения кавитации необходимо иметь давление в конце всасывающего трубопровода (во всасывающей камере насоса) не меньше 0,06 МПа для шестеренных насосов и 0,07 МПа для аксиально-поршневых. Это давление определяется из уравнения Бернулли  [c.273]


Известно, что целесообразность использования тех или иных математико-статистических методов определяется качеством того экспериментального материала, которым исследователь располагает к моменту проведения исследований, а также видом и качеством построенных моделей и числом параметров оптимизации.  [c.144]

Все работы, связанные с изучением структуры и свойств покрытий, с оптимизацией режимов нанесения и выбора состава порошков, должны проводиться с применением основных принципов статистической обработки экспериментальных данных. Современные электронно-вычислительные машины могут значительно ускорить исследования, освободить от рутинных вычислений, например, при оценке усталостных характеристик образцов с покрытиями. Стандартные программы для компьютеров обеспечат повышение точности расчетов, помогут учитывать особенности эксплуатации и в конечном счете снизить металлоемкость изделий с покрытиями при сохранении уровня конструктивной прочности.  [c.193]

Систематизированы результаты теоретических и экспериментальных исследований физических и механических, в том числе упругих свойств одно- и многофазных поликристаллических систем. Изложены современные методы оценки свойств анизотропных систем, описаны эффективные характеристики процессов распространения тепла, прохождения тока, диффузии и фильтрации в однофазных гетерогенных материалах. Показаны возможности оптимизации конструкций и технологических процессов получения материалов с благоприятной анизотропией свойств. Приведены аналитические выражения для расчета упругих и термоупругих характеристик материалов.  [c.318]

В разд. IV обсуждаются некоторые приближенные теории, являющиеся улучшенными вариантами теории эффективных модулей. В разд. V проводится обзор экспериментальных данных о распространении волн в направленно армированных композитах и об их колебаниях. В заключительном разделе указываются различные смежные проблемы, такие, как динамические эффекты в хаотически армированных композитах, динамическое разрушение, оптимизация и нелинейные эффекты.  [c.358]

Оптимизацию можно осуществить, минимизируя среднеквадратичное отклонение экспериментальных данных от математической модели. При выполнении этой операции необходимо соблюдение следующих двух основных требований (1) необходимо использовать нормированное среднеквадратичное отклонение  [c.476]

Однако экспериментальный метод имеет и некоторые серьезные недостатки, а именно (а) он дает результат лишь для данной системы волокно — матрица, полученной при помощи конкретного процесса производства (б) он становится недопустимо дорогим и слишком долгим на стадиях оптимизации материала и создания промышленных образцов (в) он не может учесть объемное содержание компонентов как конструктивную степень свободы материала (г) он не обладает механизмом учета природы прочности слоя (д) он не дает рекомендаций для эффективного исследования И конструирования материал с целью создания улучшенных свойств слоев и композитов.  [c.108]

Представленные в сборнике результаты расчета влияния излучения посторонних источников при тепловых методах контроля и экспериментальные данные по чувствительности приемников излучения в зависимости от температуры среды и фоновой засветки позволяют учесть влияние излучения посторонних источников при измерении температуры, когда их интенсивность в несколько раз превышает полезный сигнал. Даны результаты исследования по оптимизации магнитных свойств и кристаллической структуры железо-кобальтовых сплавов, используемых в качестве материалов для полюсных наконечников в электромагнитах с высокой однородностью поля. Рассчитана оптимальная конфигурация проводников с током для коррекции поля в электромагнитах радиоспектрометров ядерного магнитного резонанса, показана возможность изготовления системы коррекции в виде плоских проводников с током.  [c.4]

Пути нормирования как ПН, так и средств обеспечения надежности системы, используемые в мировой практике, в основном опираются на [92, 97] а) экономические оценки (оптимизацию) б) экспериментальные исследовательские расчеты в) прошлый опыт.  [c.386]

В общем случае приходится на основе моделей оценки и оптимизации ПН энергоснабжения потребителей и модели оптимизации надежности [оптимального резервирования, технического обслуживания и ремонтов и др. (см., в частности, разд. 5)] выполнять экспериментальные исследовательские расчеты для различных (предполагаемых) типичных условий работы системы и на этой основе вырабатывать соответствующие нормативы. В ряде случаев при этом осуществляется корректировка моделей с учетом их целевой ориентации - использования для формирования нормативов надежности [62, 63, 121].  [c.386]

Исследования напряженных состояний способствовали улучшению конструктивных форм деталей и в отдельных случаях их оптимизации. Некоторые из разработанных методов расчета нашли эффективное применение при проектировании средств вычислительной техники. Значительные успехи были достигнуты и в деле испытания деталей конструкций и материалов на прочность с воспроизведением силовых и тепловых полей, динамических режимов во времени, использованием статистических интерпретаций и принципов моделирования. Выросла предназначенная для этих целей экспериментальная база научно-исследовательских институтов, лабораторий и конструкторских бюро промышленности, усилилась деятельность высших учебных заведений как по подготовке специалистов в области прочности и динамики машин, так и в области научных изысканий.  [c.44]

Существует много способов отыскания экспериментального значения функции нескольких переменных в условиях, которые встречались при оптимизации варианта СРК. Здесь нет возможности и надобности дать даже самый общий их обзор. Подробному их изложению посвящены гл. 8 и 9.  [c.58]


Изложенная выше методика оптимизации параметров обладает тем недостатком, что она не всегда может использоваться в процессе проектирования для подбора параметров виброизоляции для упругих объектов, так как необходимые для этого обобщенные динамические характеристики в точках крепления виброизолирующих элементов не определяются расчетным путем, теоретически. Их можно получить только экспериментально, когда уже построены объект и фундамент. Изложенная выше методика должна быть использована в дальнейшем для уточнения оптимальных параметров виброзащитной системы в процессе доводки объекта. В настоящий момент даже для существенно упругих объектов известны по паспорту машины только виброперегрузки или амплитуда колебаний в некоторых точках на периферии объекта, причем эти точки могут быть расположены даже не в местах крепления виброизолирующих узлов.  [c.380]

Аналитическое решение всего комплекса вопросов, имеющего конечной целью определение параметров разрушения и оптимизацию параметров энергетического блока, практически невозможно. Более продуктивен метод, комбинирующий аналитическое рассмотрение с использованием полученных экспериментальным путем эмпирических и полуэмпирических аппроксимаций закономерностей и параметров с общей оценкой погрешности и достоверности полученных результатов.  [c.54]

Первые типы моделей, как правило, привязаны к конкретной конструкции аппарата и виду сырья. В /60/ с использованием метода планирования эксперимента были построены формализованные уравнения для описания гранулометрических характеристик, где экспериментальным путем устанавливались коэффициенты регрессии. Хотя такие модели позволяют решать вопросы оптимизации конкретного процесса разрушения в заданных диапазонах изменения варьируемых факторов, но не позволяют решать общие задачи.  [c.101]

Влияние плотности тока i при ЭМО переменным током образцов из сталей 45 и 40ХН на параметры шероховатости Ra Rp, Sm, tm волнистости tVp и степень упрочнения Uh представлено в табл. 25. Зависимость шероховатости от давления инструмента на поверхность детали имеет экстремальный характер. Поэтому необходима экспериментальная оптимизация значения давления при совокупности влияния остальных факторов. Влияние давления q ролика на деталь при ЭМО образцов из сталей 45 и 40ХН на геометрические параметры поверхностного слоя представлено в табл. 26.  [c.559]

Зависимость параметров шероховатости от давления инструмента на поверхность имеет экстремальный характер. Поэтому необходима экспериментальная оптимизация значения давления при совокупности влияния остальных факторов. При упрочнении постоянным током осуществляется лучший прогрев микронеровностей и уменьшение их сопротивляемости деформированию. Поэтому увеличение силы постоянного тока существенно не ухудшает шероховатость в отличие от переменного, с увеличением амплитуды которого происходит увеличение вибрации и сопротивляемости неровностей деформирова-  [c.359]

Попытка такой перестройки осуществлена в разработанном нами экспериментальном курсе пространственного эски-зирования, теоретическое обоснование которого приведено в данной работе. В основу экспериментального курса положен метод пространственно-графического моделирования, как наиболее точно соответствующий идее системного подхода к развитию творческого мышления. Реализация этого метода осуществляется в поисковой деятельности оптимизации структуры ( ормы во взаимосвязи с наложенными на структуру условиями. Учебный процесс в этом случае вполне согласуется с информационными требованиями автоматизации профессиональной деятельности инженера, развития у него кибернетического мышления. В учебных заданиях, построенных по новым принципам, моделируется не структура изделия (узла, детали), а структура процесса его образования (изготовления детали, конструктивной увязки деталей в сборочную единицу, проектирования целостной формы, удовлет-воряющей заданным функциональным требованиям). Концеп-)  [c.180]

Сопоставление расчетов с экспериментальными результатами разных авторов, относящихся к диффузорам с прямоугольными и криволинейными образующими, показывает удовлетворительную корреляцию, поэтому в одиннадцатой главе на основе описанного метода исследуются конкретные вопросы оптимизации диффузоров. Для поиска оптимальных конфигураций используется оптимальное управление заданного вида (ОУЗВ), в результате чего задача оптимизации сводится к задаче нелинейного математического программирования. Показаны индивидуальные особенности рассматриваемой задачи, а также новые улучшения ОУЗВ. Приводятся характерные формы оптимальных диффузоров и физическая картина движения в них. Показано влияние различных факторов (профиля скорости, габаритов и т.п.) на изменение формы оптимальных диффузоров. Даны конкретные примеры существенного улучшения гидро- и аэродинамического качества диффузоров за счет оптимизации.  [c.9]

Актуальной задачей экспериментальных исследований является проверка новых расчетных моделей турбулентности. Обычно они содержат некоторый набор коэффициентов, значения которых необходимо определить из опыта (таковы, например, числовые константы в формулах для длины пути смешения, а также значения числа Ргт). Варьируя искомые константы, добиваются наилучшего совпадения расчетно-теоретических результатов и экспериментальных данных по теплортдаче. Решение Получающейся задачи многомерной оптимизации предполагает многократное численное интегрирование системы дифференциальных уравнений пограничного слоя. Исследовательская работа такого характера требует, с одной стороны, точной, целенаправленной постановки эксперимента и, с другой, владения эффективными методами численного анализа.  [c.40]

Особое внимание в книге уделено применению информационно-измерительных систем для управления экспериментом и автоматизации сбора и обработки экспериментальных данных. В частности, в книге дано описание системы КАМАК и управляющего вычислительного комплекса СМ-4 — УКБ200, который используется при выполнении лабораторных работ по термодинамике и теплопередаче (гл. 6). Кроме того, одна из работ (ТД-б) посвящена вопросам математического моделирования на ЭВМ термодинамического цикла газотурбинной установки с целью его оптимизации.  [c.3]

Оптимизация вида ядра свертки должна проводиться с учетом относительного уровня и характера ошибок в экспериментально оцененных проекциях, особенностей подлежащих выявлению дефектов, собственной пространственной структуры контролируемого изделия, трудоемкости свертки, состава аппаратуры и используемой методики расшифровки результатов контроля (томограмм). Поэтому в случае проектирования универсальной аппаратуры ПРВТ желательно предусмотреть возможность проведения по одним и тем же измерительным данным р (г, ф) повторной реконструкции с использованием различных ядер свертки.  [c.404]

Данный обзор исследований волн и колебаний, возникающих в направленно армированных композитах, был по необходимости кратким, и список цитированных работ, бесспорно, далек от полного. Некоторые важные и интересные аспекты проблемы совсем не рассматривались. В числе последних упомянем динамические эффекты в хаотически армированных композитах, механизмы разрушения в условиях динамического нагружения, такие, например, как разрыв волокон и расслоение, оптимизацию структуры, и, конечно, нелинейность связи напряжений с деформациями при динамическом нагружении направленно армированных композитов. Аналитические и экспериментальные работы по этим темам опубликованы, но большая часть из них носит поисковый характер. Краткое обсуждение некоторых из зтих работ содержится в обзорных статьях Гёртмана [29] и Пека [53, 54]. Несмотря на это стоит закончить данную главу несколькими замечаниями относительно хаотического армирования, разрушения, оптимизации и нелинейности, а также перечислением некоторых посвяшенных этим вопросам работ.  [c.386]


Были осуществлены аналитические и экспериментальные изыскания с целью оптимизации оценки АР-параметров в соответствии с критерием минимума финальной огнибки иред-сказания (ФОП-критерия) [5]  [c.23]

Постановка задачи такова по измеренным значениям смещения спектра собственных частот найти смещение упругодиссипативных параметров. В качестве предварительных этапов предусматривается решение задачи о собственных значениях и задачи идентификации. Вводится матрица чувствительности и линейная связь между частотным и параметрическим возмущением. Далее решается вариационная задача оптимизации скалярного функционала качества. В результате получено векторно-матричное алгебраическое уравнение, в котором с целью сжатия информации используются матрицы Грама. Имея в распоряжении экспериментальные данные о смещении частот, можно вычислить параметрические возмущения. Аналогичная процедура оценки параметрических возмущений может быть построена по измеренному смещению фазы механического импеданса [5].  [c.139]


Смотреть страницы где упоминается термин Экспериментальная оптимизация : [c.461]    [c.133]    [c.474]    [c.546]    [c.85]    [c.221]    [c.291]    [c.334]    [c.137]   
Смотреть главы в:

Метрология, стандартизация и сертификация  -> Экспериментальная оптимизация



ПОИСК



Методы экспериментальных исследований, направленные на оптимизацию конструктивных, технологических и схемных решений, на повышение ресурсных параметров

Оптимизация

Экспериментально-расчетный метод оптимизации



© 2025 Mash-xxl.info Реклама на сайте