Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Эйлера малая

Таким образом, имея уравнение (3-1), можно узнать как историю движения частицы жидкости, так и ее будущее . Этот способ описания движения жидкости дан Эйлером, но известен в гидродинамике под названием способа Лагранжа, ввиду того что сам Эйлер мало пользовался им, а Лагранж применил его к своей теории распространения волн на мелкой воде.  [c.43]

По определению Эйлера, критической силой называется сила, требующаяся для самого малого наклонения колонны.  [c.265]


Система уравнений Эйлера — Пуассона настолько трудна для ее решения, что для самого общего случая, когда величины J , ]у, Jг, Хс Ус, 2с произвольные, найдено мало даже частных решений по отношению к начальным данным движения. Только при дополнительных условиях для моментов инерции и положения центра тяжести найдены три общих решения, т. е. справедливых при любых начальных данных. Остальные найденные решения являются частными, так как они удовлетворяют уравнениям движения только при определенных начальных условиях движения.  [c.457]

Для передачи движения с постоянным передаточным отношением широкое распространение получили предложенные еще Л. Эйлером (см. прил.) профили, являющиеся дугами эвольвент окружностей. Геометрическое место центров кривизны любой кривой (эвольвенты) называется эволютой. Эвольвенту и эволюту характеризуют следующие геометрические свойства эвольвента является разверткой эволюты, т. е. она описывается точкой прямой, которая перекатывается по эволюте без скольжения, поэтому радиус кривизны эвольвенты равен длине соответствующей дуги эволюты касательная к эволюте является нормалью к эвольвенте точка касания с эволютой нор.мали к эвольвенте является центром ее кривизны.  [c.94]

С другой стороны, если деформация или течение тела задается уравнением вида (1.125), то независимыми переменными являются координаты Xi и время t. Такой способ описания деформации и течения называется эйлеровым. Это описание позволяет проследить обратную картину развития деформации от конечного состояния Xi к начальному xj при U-В методе Эйлера материальная частица для деформированного состояния в момент времени t может быть выбрана также в форме прямоугольного параллелепипеда. Рассматривается бесконечно малое за время  [c.31]

За время dt этот прямоугольный параллелепипед также становится косоугольным, но его искажения являются бесконечно малыми, и поэто- Рис. 1.9 му они достаточно просто выражаются через вектор скорости v x,i)=dx/dt. Ясно, что все кинематические соотношения метода Эйлера формально можно получить из соответствующих соотношений метода Лагранжа, если считать интервал времени t—ta бесконечно малым.  [c.31]

При изучении течения сплошного тела в переменных Эйлера часто используют тензор бесконечно малых деформаций за время d . В этом случае бесконечно малый вектор перемещения  [c.73]


История науки знает различные определения понятия устойчивости. Одним из первых определений в духе первой элементарной концепции было определение, данное Л. Эйлером [5] в 1749 г. в связи с практически важным вопросом того времени — вопросом об устойчивости кораблей ...тела равновесное положение будет устойчиво, ежели оное тело будучи несколько наклонено, опять справится . В дальнейшем это понятие устойчивости для твердых тел было распространено на упругие тела равновесие упругой системы считается устойчивым в смысле Эйлера при заданных внешних силах, если после статического приложения и последующего снятия малой возмущающей силы система возвращается к своему исходному состоянию. В противном случае система считается неустойчивой.  [c.318]

Применяя статический метод Эйлера, мы рассматриваем лишь совокупность форм равновесия в малой окрестности точки бифуркации. Этим полностью исключаются из анализа устойчивости возможные формы движения.  [c.318]

Естественным обобщением понятия устойчивости Эйлера на упругопластические системы в свете второй элементарной концепции устойчивости является следующее состояние равновесия упругопластической системы является устойчивым, если система после статического приложения и последующего снятия малой возмущающей силы стремится вернуться в свое исходное состояние, пребывая в малой окрестности невозмущенного состояния [5].  [c.319]

Рассматривая перемещение тела за бесконечно малый промежуток времени и применяя теорему Эйлера — Даламбера, мы снова придем к заключению о существовании мгновенной оси вращения. Применяя далее результаты 61, получим вновь понятие о мгновенной угловой скорости. Однако этот способ следует признать менее общим, чем рассмотренный в предыдущем параграфе, так как он не вскрывает первообразных свойств угловой скорости как антисимметричного тензора второго ранга.  [c.115]

В классической механике основными определениями массы являются определения И. Ньютона и Л. Эйлера. Однако можно отметить, что в этих определениях на первое место выступают определения массы методами механики, а определение физического смысла понятия. массы остается до известной степени в стороне. Собственно, прямых возражений против определения массы как величины, характеризующей количество вещества в теле, до XX в. не выдвигалось, так как оно соответствует нашей ежедневной практике. Однако единственная возможность определения этого количества механическими средствами и невозможность, по крайней мере до XX в., найти новый подход к этому вопросу делали это определение массы мало содержательным. Отождествление массы и вещества на основании определения Ньютона принципиально ошибочно.  [c.227]

Эти приближенные равенства показывают, что при малых деформациях исчезает различие между переменными Эйлера и Лагранжа.  [c.513]

При изучении движений сплошной среды в переменных Эйлера используется тензор бесконечно малых деформаций среды за время di, когда вводится вектор относительных перемещений точки и за время At, равный  [c.9]

Другим важным случаем, когда осуществляется потенциальное обтекание, являются малые колебания погруженного в л(ид-кость тела. Легко показать, что если амплитуда а колебаний мала по сравнению с линейными размерами I тела (а<С/), то движение жидкости вокруг тела будет всегда потенциальным. Для этого оценим порядок величины различных членов в уравнении Эйлера  [c.34]

Мы будем рассматривать здесь такие гравитационные волны, в которых скорость движущихся частиц жидкости настолько мала, что в уравнении Эйлера можно пренебречь членом (vV)v по сравнению с dv/dt. Легко выяснить, что означает это условие физически. В течение промежутка времени порядка периода т колебаний, совершаемых частицами жидкости в волне, эти частицы проходят расстояние порядка амплитуды а волны. Поэтому скорость их движения — порядка v а/т. Скорость v заметно меняется на протяжении интервалов времени порядка т и на протяжении расстояний порядка X вдоль направления распространения волны (А, — длина волны). Поэтому производная от скорости по времени — порядка у/т, а по координатам — порядка v/K. Таким образом, условие (vV)v <С dv/dt эквивалентно требованию  [c.55]


Обозначив Oj. просто как v и опуская малые члены, мы можем написать х-компоненту уравнения Эйлера в виде  [c.58]

Аналогичным образом можно рассмотреть длинные волны в обширном бассейне, который мы будем считать неограниченным в двух измерениях (вдоль плоскости х, у). Глубину жидкости в бассейне обозначим посредством h. Из трех компонент скорости малой является теперь компонента Vz. Уравнения Эйлера приобретают вид, аналогичный (12,11)  [c.59]

В силу малости колебаний в звуковой волне скорость v в ней мала, так что в уравнении Эйлера можно пренебречь членом (vV)v. По этой же причине относительные изменения плотности и давления в жидкости тоже малы. Мы будем писать переменные р и р в виде  [c.350]

Примем за основные оси Ох и Oz (рис. 184). Угол между ними по общему правилу обозначим через л/2 + 0. Основными плоскостями будут плоскости х Оу и уОг следовательно, линия узлов ON будет лежать в плоскости yOz, т. е. в плоскости рисунка. Линию узлов ON направим в ту сторону,, чтобы вращение оси Ох к оси Ог на наименьший угол происходило в положительном направлении вокруг ON. Углы гр и ф выберем, положив yON = if, y ON ф. Когда угол 6 будет стремиться к нулю, так что угол хОг будет стремиться к я/2, то линия узлов ON окажется мало отклоненной от оси Оу и углы if и ф будут также малы. Таким образом, условие одновременной малости всех углов Эйлера при малом отклонении системы Ox y z от системы Охуг будет выполнено.  [c.268]

Пусть тело сначала совершило малый поворот 01, затем также малый поворот 0г согласно теореме Эйлера эта совокупность двух поворотов может быть заменена одним поворотом с вектором поворота 0. Чтобы определить вектор результирующего поворота 0, возьмем какую-нибудь точку М тела с вектор-радиусом г, которая после поворота 01 перейдет в положение М с вектор-радиусом  [c.270]

Применим уравнения Эйлера (91) к представляющей принципиальный интерес задаче одномерного распространения малых возмущений в неподвижном газе.  [c.151]

Методы решения двух последних групп являются приближенны ми лишь условно, так как с их помош,ью можно достигнуть любой точности результатов, если решение допускает уточнение в виде учета последующих членов разложения какой-либо величины или построено в форме последовательных приближений, или связано с малым интервалом при определении значения исследуемой функции. Вариационные методы могут оказаться и точными, если уравнения Эйлера—Лагранжа при исследовании экстремума функционала (например, Э) допускают точное решение или задача имеет конечное число степеней свободы (см. задачу 1.5).  [c.9]

Рассмотрим наиболее простой случай, когда колебания стержня происходят в плоскости чертежа (рис. 7.12,а). Подобного рода задачи возникают при исследовании вибраций ленточных пил, передач с гибкой связью, намоточных устройств и др. Ограничимся случаем, когда инерцией вращения и сдвига можно пренебречь. Уравнение малых колебаний стержня получим, воспользовавшись переменными Эйлера, для которых сила инерции элемента движущегося стержня (рис. 7.12,6) записывается в виде  [c.192]

Малые отклонения от состояния равновесия всегда неизбежны, и поэтому в реальных условиях тело не может находиться в состоянии неустойчивого равновесия. Вопрос об устойчивости упругого равновесия впервые исследовал Эйлер. Так как исследование этого вопроса представляет собой сложную задачу, мы ограничимся только качественными соображениями, применив их к простейшему конкретному примеру.  [c.480]

Таким образом, исследование устойчивости стержня заключается в определении значения Якр- При этом не требуется составлять и решать уравнения движения. По методу Эйлера Р р находим как силу, при которой наряду с первоначальным вертикальным положением возможно равновесие в слегка отклоненном состоянии (безразличное равновесие при малых перемещениях, рис. б).  [c.252]

Поворот частицы, наряду с углами Эйлера 0, = 0, ф, ф, можно задавать угром Ф поворота вокруг оси вращения т. Удобно ввести аксиальные векторы малого поворота dф = mdФ, которые, в отличие от конечных поворотов, коммутативны и складываются  [c.231]

Среди неявных методов интегрирования при / = onst применяют методы Эйлера, трапеций, Шихмана. Их положительными особенностями являются А-устойчивость и сравнительно малый объем памяти, требующийся для хранения результатов интегрирования, полученных на предыдущих шагах. Однако метод Эйлера не обеспечивает необходимой точности при анализе переходных процессов в сла-бодемпфированных системах. Метод трапеций в его первоначальном виде (5.9) имеет недостаток, заключающийся в появлении в численном решении ложной колебательной составляющей уже при сравнительно умеренных значениях шагов, поэтому метод трапеций удобен только при принятии мер, устраняющих ложные колебания. Значительное уменьшение ложных колебаний, но при несколько больших погрешностях, дает формула Шихмана.  [c.241]

Однако явление продольного изгиба продолжает существовать и за пределом упругости. Опытным путем установлено, что действительные критические напряжения для стержней средней и малой гибкости (Я < Кред) ниже значений, определенных по формуле Эйлера. Таким образом, в этом случае формула Эйлера дает завышенные значения критической силы, т. е. всегда переоценивает действительную устойчивость стержня. Поэтому использование формулы Эйлера для стержней, теряющих устойчивость за пределом упругости, не только  [c.511]

Вычисление смещений As точек среды снова возвращает нас к переменным Лагранжа, где начальное положение точек определяется для даиного момента пространством переменных Эйлера. Однако смещения As в переменных Эйлера будут бесконечно малыми в отличие от вектора смещения s в переменных Лагранжа, который может быть конечной величиной.  [c.221]


Для создания предпосылок последующих допущений приближенной теории гироскопа выпо чним приближенное интегрирование полученных уравнений для углов Эйлера в случае быстровращаю-щ е г о G я гироскопа, для которого собственный кинетический момент J oin — величина достаточно большая по сравненпю с наибольшей величиной знаменателя 2PU в (47). Этот случай представляет наибольший практический интерес. Для таких гироскопов разность os 00 — os 0, как это следует из (47), будет величиной малой. При этом будет малой н разность углов 0 —Оо = и, где и — изменение угла нутации гироскопа. В этом случае приближенно можно принять, отбрасывая малые второго и более высоких порядков.  [c.490]

Рассмотрим сжатые оболочки или пластины, находящиеся в плоском безмоментном напряженном состоянии. Для исследования возможной бифуркации состояния равновесия или квазистатиче-ского процесса нагружения воспользуемся методом Эйлера. Приложим статически к оболочке или пластине малую поперечную возмущающую распределенную нагрузку интенсивностью tq, которую затем статически же снимем. Допустим, что оболочка либо пластина не вернулась в исходное состояние, а перешла в смежное сколь угодно близкое моментное состояние и на ее поверхности появились локальные выпучины. Каждую такую выпучину с достаточной для практики степенью точности можно рассматривать как пологую оболочку и воспользоваться изложенной в 10.11 теорией упругих пологих оболочек. При переходе оболочки в смежное состояние точки срединной поверхности получат дополнительную деформацию бе,7, прогиб —6mi = y, а усилия и моменты — приращения 6Nij, bMij. На основании уравнений (10.111), (10.126) получим  [c.324]

Отметим, что метод конечных элементов полностью ориентирован на применение ЭВМ, хорошо приспособлен для решения краевых задач в областях сложной формы, мало чузствителен к переменности коэффициентов дифференциальных операторов и виду правых частей. Наиболее бурное развитие этого метода относится к последним двум десятилетиям, но основы метода были заложены еще в работе Р. Куранта [17], где указано, что идея соответствующего алгоритма была навеяна работой Л. Эйлера примерно двухсотлетней давности, в которой исследуются условия минимума интеграла.  [c.130]

Соответствующие общие уравнения движения отлпча)отся от уравнений, полученных в 12, лишь тем, что изменеиия величин при движении не должны предполагаться малыми, как это делалось в 12 при изучении длинных гравитационных волн малой амплитуды в связи с этим в уравнении Эйлера должны быть сохранены члены второго порядка по скорости. В частности, для одномерного движения жидкости в канале, зависящего только от одной координаты х (и времени), эти уравнения имеют вид  [c.569]

Для определения иитенсивности ударной волны (т. е. скачков величин 60 и бт1 на ней) надо обратиться к полной системе граничных условий, которым должно удовлетворять на ударной волне рещение уравнения Эйлера — Трикомн. Они были сформулированы уже в 120 условия (120,9—11). Из них последнее, уравнение ударной поляры, принимает вид (60) = t (6ti)2, где б0 = 0й2 — 0йз> бт)==т1й2 — Льз — экспоненциально малые скачки величин на ударной волне (индексы 62 и 63 относятся к линиям 0 2 и ОЬз на плоскости годографа, т. е. соответственно к передней и задней сторонам ударной волны на физической плоскости). Отсюда  [c.636]

Пренебрегая в третьем уравнении Эйлера произведением малых величин получим Шг = Ыо = Onst, Т. 6. В ЭТОМ ИриблИЖеНИИ Шг сохранит свое значение. Первое и второе уравнения дают  [c.598]

Систематическое и последовательное применение методов анализа бесконечно малых к задачам механики было осуществлено впервые великим математиком и механиком Леонардом Эйлером (1707—1783), который большую часть своей творческой жизни провел в России, будучи членом открытой по указу Петра I в 1725 г. в Петербурге Российской Академии наук. В России механика начала развиваться со времен Эйлера. Творческая сила Эйлера и разносторонность его научной деятельности были поразительны. В работе Теория двилщния твердых тел Эйлер вывел в общем виде дифференциальные уравнения движения твердого тела вокруг неподвижной точки. В гидродинамике ему принадлежит вывод дифференциальных уравнений движения идеальной жидкости. Применяя метод анализа бесконечно малых, Эйлер развивает полную теорию свободного и несвободного движения точки и впервые дает дифференциальные уравнения движения точки в естественной форме. Им дана формулировка теоремы об изменении кинетической энергии, близкая к современной. Эйлером было положено начало понятию потенциальной энергии. Ему принадлелщт первые работы по основам теории корабля, по исследованию реактивного действия струи жидкости, что послужило основанием для развития теории турбин.  [c.15]

Итак, при малых значениях X (X < 40) стержни из низкоуглеродистой стали рассчитьшают на простое сжатие при средних значениях (40 < X < 100) расчет ведут по формуле Ясинского, а при больших (X > 100) — по формуле Эйлера. График зависимости критического напряжения от гибкости для стержней из низкоуглеродистой стали изображен на рис. 26.3.  [c.292]

Представим себе, что мы нагружаем стержень осевой сжимающей силой. Напряжение растет. При некотором сжимающем напряжении сообщаем стержню малые из-гибные возмущения, а затем следим за его поведением. Если стержень восстанавливает самостоятельно свою прямолинейную форму, мы считаем, что она устойчива. Не восстанавливает — неустойчива. И вот возникает вопрос. Если мы, сообщая стержню малые возмущения, изгибаем его, то по какому модулю упругости следует определять жесткость стержня на изгиб по среднему или по местному Очевидно, — по местному, соответствующему заданному сжимающему напряжению. Значит, в формуле Эйлера под Е следует понимать параметр, который сам в некоторой мере зависит от сжимающего напряжения.  [c.151]


Смотреть страницы где упоминается термин Эйлера малая : [c.259]    [c.383]    [c.508]    [c.13]    [c.226]    [c.73]    [c.319]    [c.624]    [c.42]    [c.52]    [c.235]   
Нелинейное деформирование твердых тел (2000) -- [ c.38 , c.77 ]



ПОИСК



ВЫЧИСЛЕНИЯ - ДАЛАМБЕРА-ЭЙЛЕРА УСЛОВИ с числами, мало отличающимися

ВЫЧИСЛЕНИЯ ДАЛАМБЕРА-ЭЙЛЕРА с малыми числами

Применение теоремы количества движения к сплошной среде Теорема Эйлера. Дифференциальные уравнения динамики сплошной среды. Распространение малых возмущений

Эйлер

Эйлера бесконечно малая

Эйлера в малом

Эйлера в малом

Эйлера малых деформаций

Эйлера эйлеров



© 2025 Mash-xxl.info Реклама на сайте