Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Устойчивость корабля

История науки знает различные определения понятия устойчивости. Одним из первых определений в духе первой элементарной концепции было определение, данное Л. Эйлером [5] в 1749 г. в связи с практически важным вопросом того времени — вопросом об устойчивости кораблей ...тела равновесное положение будет устойчиво, ежели оное тело будучи несколько наклонено, опять справится . В дальнейшем это понятие устойчивости для твердых тел было распространено на упругие тела равновесие упругой системы считается устойчивым в смысле Эйлера при заданных внешних силах, если после статического приложения и последующего снятия малой возмущающей силы система возвращается к своему исходному состоянию. В противном случае система считается неустойчивой.  [c.318]


В этой связи нужно признать, что у большинства птиц и летучих мышей и даже у многих насекомых имеется и совсем иная форма обеспечения продольной устойчивости. Это тот элемент продольной стабилизации, который в авиации называется маятниковым эффектом и характерен для монопланов с верхним расположением крыла. При крыле, расположенном значительно выше центра тяжести, как у многих летающих животных устойчивость, во многом сходная с устойчивостью корабля, обеспечивается тем, что центр давления лежит выше центра тяжести. Изменению положения тела тогда противодействует пара сил, возникающая из-за смещения линии действия веса животного от линии действия аэродинамических сил.  [c.47]

Н и к о л ь с к и й Г. Н. К вопросу об автоматической устойчивости корабля на заданном курсе. Труды Центральной лаборатории проводной связи, вып. 1 (1934).  [c.909]

Таким образом устойчивость корабля как твердого тела при возникновении изгибных колебаний и плескании жидкости обеспечивается выбором компенсирующего фильтра.  [c.75]

При перемене угла атаки дирижабля прецессионного движения гироскопа не возникает, так как ось продольной устойчивости корабля и ось X—X ротора параллельны.  [c.160]

Для исследования качки корабля и его устойчивости па курсе вводят три корабельных угла ф — дифферент, 0 — крен  [c.146]

Колебательные движения систем происходят около положения устойчивого равновесия. Так, например, маятник, выведенный из состояния устойчивого равновесия, совершает колебания около этого положения корабль, спокойно стоявший в порту, находившийся в равновесном состоянии, но выведенный какой-либо внешней причиной из этого состояния, качается относительно своего устойчивого положения равновесия.  [c.263]

Для тел, плавающих на поверхности жидкости, условие устойчивости сложнее, чем для полностью погруженных тел, так как при наклоне тела (например, корабля) изменяется форма вытесненного объема и, следовательно, положение центра давления. Из рис. 1.11 видно что при наклоне корабля вправо в ту же сторону отклоняется центр давления. При положении корабля, показанном на рис. 1.11, а, гидростатическая сила с силой тяжести образуют пару сил, которая будет восстанавливать равновесие в случае, показанном на рис. 1.11, б, создается пара сил, которая будет увеличивать наклон корабля.  [c.32]

Если точку М, образованную пересечением средней линии с вертикалью, проходящей при наклоне корабля через центр давления, назовем метацентром, то условия равновесия будут определяться положением метацентра относительно центра тяжести. Когда метацентр выше центра тяжести, плавание тела будет устойчивым. При положении метацентра ниже центра тяжести равновесие будет неустойчивым.  [c.33]


При расчете корпуса корабля на прочность должна быть проведена проверка устойчивости палубы в определенных положениях корабля по отношению к гребням волн палуба оказывается  [c.198]

Результаты и методы гидростатики имеют большое значение для многих практически важных задач. В гидростатике рассматриваются задачи о равновесии воды в океанах и воздуха в атмосфере задачи о силах, действующих со стороны жидкости на плавающие корабли, подводные лодки и аэростаты задачи об устойчивости судов, плавающих на поверхности воды, и множество других задач.  [c.5]

Теория устойчивости равновесия плавающих тел, называемая теорией остойчивости , имеет очень важное практическое значение для кораблей (с ее помощью рассматриваются вопросы  [c.18]

В ходе этого полета была достигнута устойчивая радиосвязь между кораблями на всех дистанциях — от минимальной, равнявшейся 6,5 км, до максимальной, составившей к концу полета 3000 км. В этом же полете впервые была решена задача прямой передачи телевизионных изображений с  [c.445]

Очень широко используются радиоизотопы в качестве меченых атомов. Дело в том, что радиоизотоп химически ведет себя точь-в-точь, как устойчивый изотоп (или изотопы) того же самого элемента. Но где бы они ни были, каким бы химическим реакциям они ни подвергались, радиоизотопы выдают свое присутствие излучаемой ими радиацией, которая может быть уловлена подходящим детектором. Подобно тому как радиолокационная станция следит (по радиосигналам) за курсом корабля, самолета, космического зонда, специальные счетчики могут следить за движением меченых атомов по их радиоактивному излучению. И благодаря этому мы автоматически изучаем и поведение устойчивых атомов — переносчиков радиоизотопов. Таким образом, возможно изучать прохождение конкретного химического продукта через какую-либо систему и получать тем самым ценную информацию о работе всей системы. Такой системой может быть живой организм или растение, или же некоторый технологический процесс (когда нам, например, необходимо предупредить утечку или избыток атомов определенного вещества в определенных местах).  [c.125]

Несколько конструкций было исследовано, построено и опробовано военно-морскими флотами ряда стран. Изменения и модификации мачт, труб (их высоты, формы и взаимного расположения) для лучшего их соответствия друг другу не были при этом редкостью. На дредноутах британского флота были введены устойчивые трехопорные мачты (фок- и грот-мачты) (рис. 209). Кайзеровский германский флот, руководствуясь другими тактическими представлениями (считалось, что постоянно затянутое туманом Северное море не позволяет вести морские сражения на большом удалении кораблей друг от друга), оставил у себя цельную мачту, пробовал каркасные конструкции и лишь во время первой мировой войны перешел на трехопорные мачты, которые превышали по высоте фор-марс.  [c.104]

Между тем именно в математическом выражении физической стороны проблемы и решении на этой базе ее основных задач заключался единственно рациональный путь ликвидации разрыва между возможностями, которые открывало введение нового судостроительного материала, и повседневным практическим их использованием. Назрела острая необходимость в создании на основе фундаментальных теоретических исследований и тщательно поставленных опытов новой научной дисциплины, разрешающей основные вопросы кораблестроения,— определение внешних сил, действующих на корабль в разнообразных условиях морской обстановки создание методов расчета внутренних усилий и деформаций, возникающих в судовых конструкциях под действием внешних сил разработку норм прочности кораблей, обоснованных опытом их повседневной и боевой службы и обеспечивающих надежность конструкций при наименьших затратах материала Перечисленные вопросы входят в состав общей проблемы создания методов расчета прочности, жесткости и устойчивости судовых конструкций и корпуса корабля в целом.  [c.40]

В процессе развития строительной механики корабля как пауки, объемлющей многие проблемы учения о прочности, устойчивости и жесткости корабельных конструкций, выявилась необходимость выделения и специализации ряда исследований в виде самостоятельных дисциплин и отвечающих им научных направлений. Особенности конструирования подводных лодок потребовали многих усилий, направленных на решение задач, связанных со строительством подводного флота. Так возникла новая дисциплина строительная механика подводных лодок , создание которой обязано трудам Ю. А. Шиманского и его школы.  [c.62]


Каково бы ни было назначение судна, оно должно обладать плавучестью, остойчивостью, плавностью и умеренностью качки, непотопляемостью, ходкостью, поворотливостью и устойчивостью на курсе. Перечисленные мореходные качества судна изучаются теорией корабля.  [c.76]

По поручению Петербургской академии наук Эйлер занимался исследованиями по теории корабля. В 1749 г. вышла его монография Морская наука в двух томах. В первом томе излагается общая теория равновесия и устойчивости плавающих тел, во втором — теория применяется к анализу вопросов, связанных с конструкцией и нагрузкой кораблей. Это сочинение занимает видное место как в развитии теории устойчивости и теории малых колебаний, так и в кораблестроении.  [c.186]

Оригинальный приближенный метод интегрирования дифференциальных уравнений теории упругости был разработан профессором Петербургского политехнического института и Морской академии И. Г. Бубновым (1872— 1919). Впервые этот метод Бубнов описал в 1911 г. в отзыве на только что упомянутое сочинение Тимошенко, представленное на премию имени Журавского. Затем Бубнов использовал свой метод для решения задач на устойчивость пластин, важных в расчетах обшивки корабельного корпуса. Такие задачи разобраны в известном курсе Бубнова Строительная механика корабля (СПб., 1912). Бубнову, как и А. Н. Крылову, принадлежат очень большие заслуги в теории и практике кораблестроения. В частности, он явился в России пионером строительства подводных лодок, первая из которых была спу-ш ена на воду в 1903 г.  [c.263]

Все нагрузки на упругие системы условно можно разделить на консервативные и неконсервативные. К консервативным нагрузкам относятся так называемые мертвые силы, когда их линия действия перемещается вместе с конструкцией только параллельно первоначальному направлению. Примеры расчета на устойчивость систем при мертвых силах по алгоритму МГЭ представлены выше и проблемы их учета во многом решены. Этого нельзя сказать о неконсервативных силах. Системы с неконсервативными силами широко используются в жизни современного общества. К таким системам можно отнести системы с внутренними источниками энергии, т.е. ракеты, самолеты, космические орбитальные станции, буровые вышки и платформы, автомобили, корабли, подводные лодки, турбины, двигатели внутреннего сгорания, металлорежущие станки, различные краны, приборы и т.д.  [c.195]

Установившиеся явления движе1шя 69 Устойчивость аэростата в выполненном состоянии 52 Устойчивость аэростата в невыполненном состоянии 54 Устойчивость кораблей 30 Устойчивость положения ранновесия несжимаемых жидкостей 23 Устойчивость положения равновесия сжимаемых газов 39  [c.223]

Хорошо известна область реально возможных высот и скоростей ( коридор допустимых значений высот и скоростей) полета . Завоевание диапазона высот и скоростей (от 20—25 км до 170—190 км) осуществляется в современной технике и снизу созданием самолетов гиперзвуковой авиации и сверху созданием орбитальных самолетов, выводимых на стационарную круговую орбиту при помощи ракет-носителей или самолетов-носителей. Области высот от 95—ПО км до 170—190 км будут, по-видимому, освоены летательными аппаратами типа сателлои-дов Эрике (это корабли-спутники, снабженные реактивными двигателями, которые обеспечивают устойчивость корабля и развивают тягу, равную силе лобового сопротивления).  [c.235]

Про блема с точки зрения кораблестроения заключается не только в том, что дополнительная масса стальных конструкций, установленных в носовой части корабля, может повлиять на посадку и устойчивость корабля. Паровая катапульта с аккумуляторами в этом отношении представляет гораздо более серьезную проблему. Большую озабоченность должно вызывать то, каким образом скажется установка трамплина на мореходных качествах корабля.  [c.202]

С. В. Ковалевская (1850—1891), решившая одну из труднейших задач динамики твердого тела А. М. Ляпунов (1857—1918), который дал строгую постановку одной из фундаментальных задач механики и всего естествознания — задачи об устойчивости равновесия и движения.и разработал наиболее общие методы ее решения И. В. Ме-ш,ерский (18Й—1935), внесший большой вклад в решение задач механики тел переменной массы К. Э. Циолковский (1857—1935), автор ряда фундаментальных исследований по теории реактивного движения А. Н. Крылов (1863—1945), разработавший теорию корабля и много внесший в развитие теории гироскопа и гироскопических приборов.  [c.8]

Ламерея , построенная на этих кривых, может содержать самое большее две ступеньки . Это означает, что при любых начальных условиях изображающая точка попадает на отрезок (4.49) скользящих движений не более чем после двух пересечений граничной прямой д + Ру = 0. Соответствующее разбиение фазовой плоскости ху на траектории для рассматриваемого случая О < р < 1 показано на рис. 4..38. Рассмотрение случая р<0 проводится аналогично. Функция последования по-прежнему определяется соотношениями (4.51), а диаграмма Ламерея имеет вид, показанный на рис. 4.39. Таким образом, в случае Р < О точечное отображение (4.51) имеет единственную неподвижную точку, которая является устойчивой. На фазовой плоскости ху этой точке соответствует устойчивый предельный цикл, распо.по/ <-Рнный симметрично относительно начала координат (рис. 4.40). При эгом режи.ме корабль  [c.108]

Известны замечательные свойства быстровращающего-ся волчка, который под действием собственного веса не падает на бок в направлении действия силы веса, а спокойно балансирует на кончике своей оси. Удивительная устойчивость, сообщаемая волчку быстрым вращением, уже давно привлекала внимание. Еще в XVIII в. делались попытки использовать это свойство волчка для определения направления истинной вертикали на корабле, однако в то время такой прибор не получил практического применения.  [c.7]


Степень устойчивости (остойчивость) корабля определяется величиной расстояния между центром тяжести и метацентром, называемой метацентрической высотой. Чем больше метацентри-ческая высота, тем больше остойчивость корабля и тем быстрее он возвращается в положение равновесия, когда выводится из этого состояния внешними силами.  [c.33]

Уменьшение качки корабля при помощи гироскопов. Существует множество других практических применений гироскопических принципов, как, например, управление мины, указатель поворота в аэропланах, однорельсовый путь Бреннана и пр. Мы займемся только одним, а именно приспособлением, изобретенным Шликом [S hli k (1904)] для уменьшения качки корабля. Его легко понять, и не входя в технические подробности. Быстро вращающееся маховое колесо поддерживается рамой, которая может качаться вокруг оси, перпендикулярной к средней плоскости судна. Ось колеса может передвигаться в этой средней плоскости, причем ее положение при устойчивом равновесии, когда корабль неподвижен, а, рама под действием тяжести колеса тоже находится в устойчивом равновесии, будет вертикальным. От этого положения оси колеса, как нулевого, и отсчитываются ее отклонения. Качание  [c.146]

Расчетные схемы, выходящие за рамки общетехнических и свойственные только конкретно взятой области техники, рассматриваются в разделах инженерной механики, название которых начинается со слов Строительная механика... , например, строительная механика сооружений, строительная механика сварных конструкций, строительная механика корабля, самолета и т. д. Эти дисциплины посвящены в основном развитию эффективных методов анализа специфических расчетных схем. Так, например, в строительной механике самолета рассматриваются вопросы устойчивости пластин, подкрепленных оболочек и других тонкостенных элементов. В строительной механике сооружений большое место занимают специальные воиросы раскрытия статической неопределимости рам и стержневых систем. Словом, строительная механика любого профиля может рассматриваться как специализированное сопротивление материалов, изложенное в духе определенной отрасли техники.  [c.6]

Эти решения приводятся в курсе П, Ф. П а п к о в и ч а Строительная механика корабля , ч. I, том II, Морской транспорт , 1947, повторяются и в других книгах по строительной мехагшке корабля. Я. И. Короткий,. .Л, 3. Лок-щин, Н. Л. Сивере, Изгиб и устойчивость стержней и стерж-  [c.252]

Ч Родственными задаче о расчете на устойчивость балки на сплошном упругом основании являются задачи расчета балки на многих упруго проседающих опорах и стержневого перекрытия. Эти задачи рассматривались в частности в курсе И. Г. Бубнова Строительная механика корабля, )9]2, ч. 1 1914, ч. 2, и в книге П. Ф. Панковича, упоминавшейся на стр. 279.  [c.352]

С целью снижения веса конструкции при проектировании башен Шухов сделал попытку перейти от использования прокатного профиля на трубчатые стержни, предусмотренные патентом № 1896 (2.8), в первоначальном варианте проекта башни в г. Тюмени (1906 г.). Однако применение для стоек специальных соединений швейцарской марки g/ и дорогая сборка сделали это рациональное техническое решение экономически невыгодным. Сборка гиперболоидных конструкций из труб (диаметр которых постепенно уменьшается от 6 до 3") нашла применение для наблюдательных сетчатых мачт на военных кораблях в США и России в связи с высокими требованиями, предъявленными к легкости конструкции. Для большей устойчивости в отдельных случаях гиперболоидная система собиралась из швеллерных стержней (Шаболовская башня, г. Москва, 1922 г. — см. рис. 175 и 184). До 1905 г. в напорных башнях для крепления стержней и колец применялись болты. При строительстве Николаевского водопровода (1907 г.) башня до установки резервуара была собрана на болтах, и только затем болтовые соединения заменялись заклепочными. Впоследствии основным техническим решением соединения элементов остова башен и резервуара использование клепки стало традиционным. С развитием и применением сварки ее стали использовать (с 1930 г.) для элементов как резервуара, так и высотного узла башни.  [c.82]

Министерство Военно-Морского Флота США высказалось в пользу сетчатой мачты для руководства артиллерией в сочетании с бронированным командным пунктом для управления кораблем. По предложению капитана Ховгаарда , руководителя Массачусетской школы военного кораблестроения, который считал сетчатые мачты находкой , идеальной конструкцией и, по всей видимости, очень устойчивыми против орудийного огня , было создано конструкторское бюро во главе с военно-морским инженером Робинсоном. Первая модель состояла из пучка проволоки в форме гиперболоида вращения, который через каждые 70 м был укреплен бандажами. Если вырезать несколько элементов в одной секции между двумя кольцами, то мачта останется в том же положении. Каждый элемент мог бы быть прорезан в нескольких местах в разных секциях без разрушения конструкции.  [c.106]

Брейерсообщает об учебных стрельбах (с участием судов Катадин и Сан Маркос ), в ходе которых сетчатая мачта доказала свою устойчивость, — она упала лишь после тринадцатого попадания снаряда из орудия калибра 305 мм. Однако единодушного одобрения военных сетчатая мачта так и не снискала, поскольку марсовая платформа артиллерийского командного пункта была совершенно не защищена, а устойчивость и вибростойкость сетчатой мачты, по их мнению, оставляли желать лучшего. Тем не менее сетчатая мачта на годы вперед определила лицо американских боевых кораблей.  [c.106]

У. П а п к о в и ч П. Ф., Строительная меха ника корабля, ч. 2-я. Сложный изгиб и устойчивость стержней. Изгиб и усгойчивость пластин, Судпромгиз, 1941.  [c.332]

Конструкция вкладыша с малыми зазорами фирмы Дешимаг показана на фиг. 47 (приблизительно 1937 г.) Он предназначен для многокорпусных судовых турбин активного типа средней и крупной мощности. Роторы этих турбин в основном короткие, цилиндры жесткие характерны весьма малые зазоры в концевых и диафрагменных уплотнениях (0,2- 0,25 м.м). Поэтому важно получить максимально устойчивое положение вала в подшипнике при всех режимах, в том числе и при качке корабля.  [c.166]

Без преувеличения можно сказать, что Справочник Шиманского сыграл значительную роль в приближении основной цели, поставленной его автором — сделать достижения науки о прочности корабля достоянием широких кругов кораблестроптелей и научить их использованию этих достижений для создания рациональных корпусных конструкций, отличающихся необходимыми прочностью, жесткостью и устойчивостью при минимально возможном весе. По этому поводу в предисловии к изданию 1916 г. можно прочесть Отсутствие специальной справочной книги по кораблестроению стало особенно ощутительным после тех успехов, которые сделало отечественное судостроение за последние десять лет. Успехи эти сопровождалнсь установлением во многом новых  [c.41]

Здесь, как и в других своих работах, Юлиан Александрович напоминал, что прочность строяш егося корабля обеспечивается коллективной работой инженеров-конструк-торов и рабочпх-судостроителей. Для ее успешного завершения необходимо, чтобы рациональная конструкция была изготовлена качественно, т. е. неизбежные в процессе производства отклонения не выходили за пределы расчетных допусков. Превышение их при сборке корпуса подводной лодки, как показали расчеты Шиманского, могут привести к нреждевременной потере устойчивости шпангоутов и наружной обшивки в условиях, близких к предельной глубине погружения. Это заключение подтверждается и предшествовавшим ему опытом строительства подводных кораблей.  [c.66]

Действие гироскопического эффекта обычно связывают с устойчивостью вращающегося волчка. Удивительная устойчивость, сообщаемая волчку быстрым вращением, уже давно привлекала внимание пытливых умов. Еще около 200 лет назад в английском флоте была сделана попытка использовать это свойство быстро вращающегося волчка для создания на корабле устойчивого искусственного горизонта , могущего заменить в туманную погоду ВИДИМЫ11 горизонт. В наше время гироскопические приборы приобретают все большее значение в различных областях техпикрх. В частности, военная и военно-морская техника оснащены целым рядом приборов, основанных на принципе гироскопа, особенно широкое применение гироскоп получил в авиации.  [c.128]



Смотреть страницы где упоминается термин Устойчивость корабля : [c.244]    [c.282]    [c.510]    [c.120]    [c.121]    [c.36]    [c.279]    [c.68]    [c.75]    [c.129]    [c.99]   
Аэродинамика (2002) -- [ c.147 ]



ПОИСК





© 2025 Mash-xxl.info Реклама на сайте