Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Системы механические — Классификация

Введение в динамику механической системы. Механическая система. Классификация сил, действующих на механическую систему силы активные (задаваемые) и реакции связей силы внешние и внутренние. Свойства внутренних сил. Масса системы. Центр масс радиус-вектор и координата центра масс.  [c.8]


В брошюре изложены сведения о телемеханических системах, их назначении, классификации и исполнении. Рассмотрены схемы и принципы действия основных узлов устройств телеуправления, телесигнализации, телеизмерения. Приведены краткие описания некоторых теле механических систем общепромышленного назначения, выпускаемых отечественной промышленностью. Даны примеры использования средств телемеханики в системах энергоснабжения промышленных предприятий.  [c.2]

Таким образом, любая сила, действующая на точку механической системы Б соответствии с приведенными двумя классификациями сил, является внешней или внутренней и в то же время она является задаваемой силой или реакцией связи.  [c.89]

Конечные связи и дифференциальные интегрируемые связи составляют класс голономных механических связей, а дифференциальные неинтегрируемые связи —класс неголономных связей. Соответственно системы, содержащие лишь конечные или дифференциальные интегрируемые связи, относятся к классу голономных систем., а системы, содержащие дифференциальные неинтегрируемые связи, — к классу неголономных систем. Далее мы не будем заниматься неголономными связями, и поэтому опускаем их классификацию (рис. IV.7). Что же касается голономных связей, то их можно подразделить далее в зависимости от того, содержат ли равенства, выражающие эти связи, в явной форме время. В тех случаях, когда эти равенства не содержат время явно, механическая связь называется стационарной или склерономной. В тех случаях, когда время явно входит в эти равенства, связь называется нестационарной или реономной. Обычно стационарные связи имеют место в тех случаях, когда поверхности или кривые, на которых должны находиться материальные точки, либо расстояния между этими точками не меняются со временем. Наоборот, в тех случаях, когда материальные точки должны находиться на кривых или поверхностях, которые сами меняются со временем, связи оказываются реономными.  [c.148]

МЕХАНИЧЕСКАЯ СИСТЕМА. КЛАССИФИКАЦИЯ СИЛ.  [c.545]

Принципиальным является деление элементов систем безопасности на активные и пассивные. Под активным понимают элемент, функционирование которого зависит от нормальной работы другого элемента. Пассивный — это такой элемент, функционирование которого не зависит от нормальной работы другого элемента. Подобная классификация сказывается на реализации важнейшего принципа проектирования систем безопасности — принципа единичного отказа. Этот принцип применительно к системам безопасности состоит в том, что система должна выполнять заданные функции при любом, требующем ее работы, исходном событии и при независимом от исходного события отказе одного из ее активных элементов или пассивного элемента, имеющего механические движущиеся части. Этот принцип устанавливает резервирование каналов систем безопасности.  [c.107]


Система сравнения имеет ряд существенных дефектов образцы легко подвергаются коррозии, меняют цвет, блеск различные материалы, детали различных размеров и различной формы (плоская, круглая внутренняя, круглая наружная) требуют различных образцов, и поэтому в цехе требуется большое их количество глазомерная оценка субъективна образцы требуют тщательного хранения и бережного обращения они громоздки в практическом применении и должны меняться одновременно с изменением методов механической обработки. Однако несмотря на отмеченные недостатки, система сравнения является весьма простым наглядным методом сравнения обработанных поверхностей, особенно в заводских условиях. Каждый завод, пользуясь общесоюзным стандартом классификации микрогеометрии поверхности, должен определить технические условия на чистоту обработки отдельных деталей, производимых данным заводом. При этом основным способом оценки чистоты поверхности должно быть испытание на одном из приборов, рекомендуемых стандартом, а образцы могут явиться лишь вспомогательным средством, позволяющим не обращаться каждый раз к профилографу и таким образом ускоряющим работу технического контроля.  [c.25]

Основные динамические модели веретен с механическим приводом и их классификация. Наиболее распространенные конструкции веретен классифицируют по типу динамической системы, принятой в той или иной конструкции по следующим наиболее существенным признакам.  [c.210]

Классификация параметрических резонансов. Рассмотрим механическую систему, движение которой описывается уравнением (1). При отсутствии параметрического возбуждения уравнение системы имеет вид  [c.119]

Классификация механических систем балансировочных станков. Балансировочный станок по существу является измерителем колебаний механической системы, связанной с ротором, по характеристикам которых можно судить о неуравновешен-  [c.48]

Многоуровневый характ формирования реакции материала внешнему механическому воздействию предопределяет возможность многоуровневого феноменологического описания. Каждый структурный уровень связан с некоторой системой элементов неоднородности (естественных или вызванных поврежденностью). Анализ введенных на структурном уровне напряжений и деформаций как осред-ненных величин служит средством исследования механического поведения материала в рамках соответствующего уровня феноменологии. Двухуровневое рассмотрение процессов деформирования и разрушения положено в основу классификации Давиденкова-Фридмана и структурно-феноменологического подхода в механике композитов [247].  [c.21]

Опираясь на разработанный в основном Э. Раусом метод малых колебаний, Томсон и Тэт произвели классификацию сил в механической системе и, кроме сил консервативных и диссипативных, ввели понятие обобщенной гироскопической силы, выражаемой формулой которой индексы  [c.144]

Современная лабораторная техника применяет для определения механических свойств материалов чрезвычайно обширную и разнообразную номенклатуру машин и приборов. Эти испытательные машины и приборы отличаются своим назначением, областью применения, принципом работы и конструктивными особенностями. В настоящее время типоразмеры испытательных машин и приборов, выпускаемых многими отечественными и зарубежными предприятиями, исчисляются тысячами, поэтому разработка единой классификации по этим четырем указанным признакам привела бы к весьма громоздкой системе.  [c.9]

Лабораторная техника применяет для определения физико-механических и технологических свойств полимерных материалов достаточно разнообразную номенклатуру машин и приборов. Эти испытательные машины и приборы могут различаться по своему назначению, области применения, принципу работы и конструктивному оформлению. Насчитывается очень большое количество типоразмеров испытательных машин и приборов, выпускаемых как отечественной, так и зарубежной промышленностью, поэтому разработка единой классификации по указанным четырем признакам привела бы к весьма громоздкой системе.  [c.45]


Свободные и несвободные механические системы. Классификация связей. Геометрические связи. Ограничения, налагаемые геометрическими связями на скорости и ускорения точек системы, и вариации координат. Число степеней свободы системы. Обобщенные координаты, обобщенные скорости.  [c.12]

Система соотношений (2)-(4) полностью определяет механические свойства рассматриваемой модели тела, индекс которой Pev, согласно классификации [5.  [c.285]

Вилки, стяжки и серьги изготовляют из стали Ст.З, Ст.5, 35, 45, 40Х чугуна ковкого и серого марок СЧ 15-32, СЧ 18-36 и др. Разнообразие конструкций вилок, стяжек и серег затрудняет четкую их классификацию по технологическим или другим признакам. Подавляющая часть стяжек, вилок и серег, изготовляемых в серийном и массовом производстве тракторного, сельскохозяйственного машиностроения и в станкостроении, имеет сравнительно небольшие размеры — до 200—300 мм (рис. 116). Механической обработке подвергают отверстия, торцы головок, частично наружные цилиндрические и плоские поверхности. Обработку, как правило, производят на фрезерных, сверлильных, токарных и протяжных станках, так как предусмотренные техническими условиями требования к точности изготовления и шероховатости обрабатываемых поверхностей серег, вилок и стяжек могут быть обеспечены механической обработкой на этих группах станков. Операции выполняются по различным схемам в зависимости от массовости изготовления деталей. Критерием выбора оснастки является экономическая целесообразность в заданных производственных условиях. Так, в массовом и крупносерийном производстве используют фрезерные приспособления, которые позволяют применять многоместную многоинструментную параллельно-последовательную обработку (схемы 13—20, 25-—26 см. табл. 3). В серийном производстве применяют универсально-наладочнЫе и простые специальные приспособления, которые позволяют выполнять операции по менее производительным схемам фрезерных операций (схемы 5, 9, 13 и др.). В единичном и мелкосерийном используют приспособления системы УСП, которые обеспечивают возможность выполнять операции по схемам 1, 3, 5, 9 и очень редко по схеме 23 (см.  [c.167]

Предложенная классификация не исключает иное подразделение композиционных материалов, но ее использование с учетом природы составляющих компонентов дает возможность дифференцировать композиционные материалы по механизму их образования, физико-механическим, антикоррозионным и химическим свойствам, поскольку существование границ раздела фаз и их протяженность как функция размеров частиц обеих фаз и их взаимного расположения определяет термодинамические и кинетические свойства системы, а следовательно, и ее эксплуатационные свойства. В табл. 1.1 приведена структурно-размерная классификация КМ.  [c.15]

В теории механизмов, в зависимости от характера решаемых задач, применяют различные классификации сил. Согласно первой классификации действующие на механическую систему силы подразделяют на заданные (активные) и реакции связей. Согласно второй классификации действующие на систему силы делят на внешние и внутренние по отношению к этой системе. Эти две классификации сил известны из курса обнщй механики. Третья классификация является специфичной для теории механизмов. Согласно третьей классификации силы, действующие на механизм и развивающие мощность, подразделяют на силы движущие и силы сопротивления.  [c.56]

В технике радиовеш,ания используют микрофоны различных типов. Их классифицируют прежде всего по признаку приема звуковых колебаний входным звеном — механической колебательной системой. Затем следует классификация по способам преобразования механических колебаний в электрический сигнал.  [c.77]

Следует отметить, что не все физико-механические явлв ния, на основе которых записана система уравнений, полученная в 6.2—6.4, имеют место при воспламенении и горении реагирующих веществ. В связи с этим представляе интерес данная А. Г. Мержановым классификация конденсированных реагирующих веществ (рис. 6.5.1). Классифи кация проведена в соответствии с теми или иными процессами, протекающими в конденсированном веществе. Соглас-  [c.267]

Классификация кинематических пар по числу степеней свободы и числу связей. Числом степеней свободы механической системы называется число независимых возможных перемещений системы. Для твердого тела, свободно движущегося в пространстве, число степеней свободы равно шести три возможных перемещения вдоль неподвижных координатных осей и три — вокруг этих осей. Для звеньев, входящих в кинематическую пару, число степеней свободы в их относительном движении всегда меньше шести, так как условие постоянного соприкасания звеньев кинематической пары уменьшает число независимых возможных перемещений. По предложению В. В. Добровольского все кинематические пары подразделены по числу степеней свободы на одно-, двух-, трех-, четырех- и пятиподвижные. В табл. 1 даны примеры кинематических пар с условными обозначениями по ГОСТ 2.770—68, которые дополнены обозна-  [c.12]

Классификация кинематических пар по числу степеней свободы и числу связей. Числом степеней свободы механической системы называется число возможных перемещений системы. Для твердого тела, свободно движущегося в пространстве, число степеней свободы равно шести три возможных перемещения вдоль неподвижных координатных осей и три — вокруг этих осей. Для звеньев, входящих в кинематическую пару, число степеней свободы в их относительном движении всегда меньи1е шести, так как условия постоянного соприкасания звеньев кинематической пары уменьшает число возможных перемещений. По предложению В. В. Добровольского ) все кинематические пары подразделены по числу степеней свободы на одно-, двух-, трех-, четырех- и пятиподвижные. В табл. 1 даны примеры кинематических пар с их условными обозначениями но ГОСТ 2770-68, которые дополнены обозначениями, рекомендованиыми Международной организацией по стандартам (ИСО) ). Наиболее распространенными являются одноподвижные пары, которые представлены в трех вариантах. В поступательной паре относительное движение ее звеньев прямолинейно-поступательное, во вращательной паре — вращательное и в винтовой — винтовое, т. е. движение, при котором перемещения вдоль и вокруг какой-либо оси связаны между собой определенной зависимостью.  [c.21]


Во введении (гл. 1) композитные системы были разделены на три класса. Б первый класс входят композиты, образованные из нереагн рующих и взаимно нерастворимых компонентов во втором классе допускается некоторая растворимость компонентов без участия химической реакции третий класс включает системы, образованные реагирующими компонентами. Из этой общей классификации исключены физико-химический и механический аспекты связи. Последний вопрос обсуждался в гл. 2, а первый будет рассмотрен ниже.  [c.79]

Как с очевидностью следует из предыдущего обсуждения, су-щест>вование чисто механической связи маловероятно. В классификации уже указывалось, что механическая связь предполагает отсутствие какого бы то ни было химического взаимодействия. Однако слабые вандерваальсовы силы действуют между поверх-ностЯмй всех материалов, и, таким образом, вышеупомянутое условие никогда полностью не выполняется. Возможно, лучше было бы такое определение механической связи, в котором указывалось бы на преобладание механического взаимодействия. Композит медь —окись алюминия является интересным примером системы, в которой сила химической связи непрерывно изменяется. Если окись меди отжигается в контакте с окисью алюминия при высокой температуре (например, при 923 К), то между ними образуется связь. В присутствии водорода окись меди восстанавливается вначале до насыщенного кислородом металла, а затем —до металла, в котором постепенно уменьшается количество растворенного кислорода. При этом химическая связь окиси алюминия с восстановленной медью ослабляется до тех пор, пока не остается только механическая связь с медью, свободной от кислорода.  [c.82]

Ф. Рело ввел в теорию механизмов понятие о кинематической паре и кинематической цепи как единой совокупности кинематических пар. Это позволило при изучении структуры механизмов отойти от описательного метода изучения различных механизмов, создаваемых человеком, перейти к научному анализу механизмов как механических устройств с различным сочетанием кинематических пар. Но уже в 20-х годах нашего столетия стало очевидным, что на основе только учения Ф. Рело о кинематических парах нельзя создать стройной классификационной системы механизмов. Потребовалось много усилий для того, чтобы такая система была создана. В основу классификации был положен признак единства методов кинематического анализа механизмов, принадлежащих к одному и тому же классу.  [c.26]

Для классификации отказов и процессов их возникновения по виду энергии важнейшими являются механическая — энергия свободно движущихся отдельных микрочастиц и макросистем и энергия упругой деформации системы (тела) тепловая— энергия неупорядоченного, хаотического движения большого числа микрочастиц (атомов, молекул и др.) электрическая (электростатическая и электродинамическая) — энергия взаимодействия и движения электрических зарядов, электрически заряженных частиц химическая — энергия электронов в атоме, частично освобождаемая в результате перестройки электронных оболочек атомов и молекул при их взаимодействии в процессе химических реакций электромагнитная—энергия движения фотонов электромагнитного поля аннигиляционная — полная энергия системы, вещества (энергия покоя и энергия движения), освобождаемая в процесе аннигиляции (превращения частиц вещества в кванты поля).  [c.37]

В ряде работ предложены классификации деталей по технологическим признакам. В [20] рекомендуется делить все основные детали, подвергающиеся механической обработке, на шесть классов корпусные детали, круглые стержни (валы), полые цилиндры (втулки), диски, некруглые стержни, крепежные детали. В [59] принято деление на детали правильной формы тела вращения (короткие и длинные), призматические (сплошные, корпусные), плоские и детали неправильной формы (фигурные и профильные). Несмотря на различие подходов при составлении этих классификаций, принципиально они не отличаются друг от друга. Реализованные гибкие станочные комплексы (системы) могут быть разделены на три основные группы для деталей типа тел вращения (шпинделей, валов, втулок, дисков, зубчатых колес, крепежных деталей), для корпусных и призматических деталей и для плоских деталей (штампованных деталей, крышек, печатных плат). ГПС создаются также с учетом возможности группирования деталей по размерам и точности обработки, условиям зажима и загрузки. Примеры реализованных структур для линий и участков (последние отличаются от линии не только числом станков, но значительно большей свободой изменения потока заготовок и изделий, распределяемых между накопителями, складами и технологическим оборудованием) приведены в [18, 59]. Число вариантов этих структур непрерывно увеличивается, однако типовой состав оборудования для механо-сборочных производств уже в достаточной степени определился. Для выполнения ряда технологических процессов в крупносерийном производстве нашли также применение переналаживаемые роторные и роторноцепные линии. Некоторые типичные структуры гибких участков  [c.7]

Станок как комплекс механическая система — релейное устройство . Источники вредных воздействий на механическую систему и релейное устройство. Процессы, происходящие в эксплуатируемых станках. Процессы, обусловлеиные свойствами станка как термодинамической системы. Процессы, обусловленные свойствами станка как упругой системы. Процессы, обусловленные свойствами станка как стареющей системы. Классификация процессов по скорости протекания.  [c.299]

Классификация стали по механическим свойствам нашла отражение в системе обозначений марок углеродистой стали и в немецких стандартах (D1N). В этой системе двузначным числом справа от индекса st (Stahl) обозначается предел прочности при растяжении в k2 mm последние две цифры обозначения марки отвечают двум последним цифрам наименования стандарта, двумя первыми цифрами которого является групповое число 16.  [c.359]

Замечательный специалист в области кузнечно-прессовых машин, лауреат Ленинской премии В. П. Линц в своем очерке Периодическая система профессора Зимина , посвященном музею кузнечной пауки и техники с пожеланиями развития и расширения работ по пропа-гапде истории кузнечного дела , писал Классификация — это азбука любой дисциплины, и не только в технике. Формально ее значение признается всеми. Она входит в учебники и программы. Но фактическое отношение к ней большинства преподавателей таково, что предметом большой науки ее не считают, относят к примитивному разряду обязательного ассортимента. Анатолий Иванович с самого начала не спешил окончательно отвечать на все вопросы, всплывавшие при обдумывании им классификации кузнечных машин, хотя для многих его коллег эти ответы, причем однозначные, лен али на поверхности. С годами, скрупулезно поверив алгеброй" практически все виды молотов — механических, движимых водой, воздухом или паром, все виды прессов — кривошипных и гидравлических, Зимин пришел к выводу, что в правильно составленной классификации кузнечного оборудования таятся непознанные закономерности их развития, прорисовываются контуры совершенно новых, неизвестных доселе машин.  [c.54]


Периодическая система энерготипов кузнечно-нрессо-вых машин А. И. Зимина в совокупности с обобщенными параметрами перспективного проектирования, классификацией кузнечных машин по кинематическим признакам рабочего хода зало кила философию кузнечных машин н наметила широкие перспективы создания принципиально новых видов машин. Своей системой ученый упорядочивает все существующие кузнечные машины и предсказывает возможность создания качественно новых машин, неизвестных в мировой практике. А. И. Зимин пишет Одним из основных признаков, определяющих кузнечнопрессовые машины как собственно машины, является характер преобразования в них входной энергии Е ,, потребляемой машинами, в выходную механическую работу А , предназначенную для пластического деформирования поковок Ад.  [c.60]

Классификация приборов для измерения перемещений та же. что и в тензометрах (см. стр. 490). Кроме того, приборы для измерения перемещений различаются а) по виду механических величин, преобразуемых в пропорциональные им сигналы (с датчиком перемещения, с датчиком скоростей, с датчиком ускорений, с датчиком деформаций) б) но способу обеспечения неподвижной точки, по отношению к которой измеряется перемещение (датчик связан с неподвижной точкой датчик сейсмического типа, при котором записывается перемещение относительно массы, подвешенной к корпусу прибора на пружинах) [13] в) по числу компонент измеряемых перемещений г) по виду успокоения подвижной системы.  [c.511]

Для осуществления той или иной системы со взвешенным материалом (псевдоожижениым слоем, взвешенным слоем и т. д.) важное значение имеют расположение мест подачи и отвода взвешивающей среды и материала, наличие и расположение решетки, ограничивающей движение материала, интенсивность подачи материала и среды. Лапидус и Элджин [Л. 692] приводят примерную классификацию вертикальных систем со взвешенным материалом свободных и с механическим сдерживанием материала (restrained). Свободные системы — те, где поток материала не сдерживается никакими специальными устройствами внутри трубы (колонны), а регулируется извне подачей материала (при достаточной для взвешивания подаче текучей среды). Системы с механическим сдерживанием материала— те, где путь частиц в трубе ограничен решетками, а расход материала через систему регулируется в месте его выхода. По взаимному направлению движения материала и текучего различают, как обычно, прямоточные и противоточные системы, по направлению движения материала — системы с восходящим и нисходящим перемещением его.  [c.136]

В системе сертификации механических транспортных средств и прицепов в настоящем издании используется классификация и определения транспортных средств, установленные Свободной резолюцией по конструкции транспортных средств (пересмотр 1, документ TRANS/WWP.29/78/Revl (Amend.2). В соответствии с указанным документом транспортные средства для перевозки грузов относятся к категории N.  [c.7]

Классификация линейных систем. Введенная классификация сил позволяет классифицировать линейные системы с постоянными параметрами. Системы, находящиеся под действием одних только консервативных позиционных сил, называют консервативными системами. Системы, находящиеся под действием одних только гироскопических сил или гироскопических и позиционных консервативных сил, называют гироскопическими. Для этих n T iM выполняется теорема о сохранении полной механической энергии, т. е. эти системы также являются консервативными.  [c.90]

В классификации по числу степеттей свободы механические системы распределены по семи классам (табл. 9). Номер класса (римская цифра) соответствует числу степеней свободы жесткого ротора буквой А дополнительно обозначена группа станков, имеющих рахру, на которой размещены опоры ротора, а буквой Б —группа станков с опорами, установленными на неподвижном основании.  [c.49]

Во втором томе даны общие сиедения о нелинейных механических колебательных системах, их классификация, приведены основы теории устойчивости. Изложены математические методы анапи- а и рассмотрены основные модели нелинейных колебательных систем Приведены ре- льтаты. отиосям песя к специальным современным проблем<1м теории нелинейных колебаний  [c.4]

Илиев И. Классификация линейных интегралов голономной механической системы с п степенями свободы. — ПММ, т. 36, вып. 1.  [c.100]

Изложены основные результаты, полученные авторами при исследовании стационарных движений твердого тела, подвешенного на безынерционной нерастяжимой струне (стержне) к неподвижному основанию. Обсуждаются принципы классификации механических систем по числу и свойствам возможных в них стационарных режимов типа перманентного врагцения и регулярной прецессии. Ироанализи-эованы все предельные режимы системы при неограниченном росте угловой скорости.  [c.281]

Этот и следующий разделы данного обзора посвящены построению классификации механических систем тело на струне (стержне) в том смысле, что в пространстве параметров системы выделяются такие области, где возможны определенные наборы стационарных движений, нерманентных вращений или регулярных прецессий, причем стационарные движения отличаются определенными качественными свойствами и характером их эволюции.  [c.310]

Для обобщения конструкций приспособлений создана классификация механически обрабатываемых деталей. Обычно пользуются технологическими классификаторами, хотя они не всегда удобны, так как в них содержится большое количество групп. Например, институтами Оргстанкинпром и Орглитмаш разработаны классификаторы деталей, обрабатываемых механическим способом, и построены классификационные карты на тысячу групп. В этих классификаторах основным подразделением является класс — совокупность деталей, характеризующихся общностью назначения, конструкторско-геометрической формой и общностью решения основных технологических задач, т. е. характером и порядком чередования операций обработки. В системе классификации Оргстанкинпрома 10 классов к классу О относятся заготовки и детали без последующей обработки к классу 1 — мелкие детали диаметром до 400 мм и длиной до 100 мм (оси, валики, штифты, втулки, кольца, винты, болты, гайки, штуцеры, угольники, тройники) к классу 2 — винты, валы длиной более 100 мм и т. д. Каждый из 10 классов, в свою очередь, делится на 10 подклассов. Затем подклассы разделяются на группы по материалу, классу точности изготовления и термической обработке. Такая классификация пригодна для конструкторов, занимающихся нормализацией и унификацией деталей и их конструктивных элементов, или для заимствования деталей машин, освоенных заводом из ранее разработанных конструкций, при проектировании новых изделий, пригодна для технологов при разработке типовых технологических процессов на всю или часть группы деталей, для инженеров занимающихся вопросами специализации производственных участков. Однако такая сложная и многономенклатурная классификация деталей не совсем  [c.95]

Автор предложенной классификации отмечает, что между этими классами нет четкой границы. Взаимная растворимость компонентов часто означает химическое взаимодействие, и поэтому различие между классами будет исчезать при изменении температуры и механических воздействиях на материал. По И. В. Тананаеву, композиционный материал — это живущая , т. е. термодинамически неравновесная, система [20], так как наличие границы между фазами (матрица, II фаза и межфазная граница) и их совместная работа в условиях эксплуатации отличает композиционные системы от чистых мономатериалов или систем и обусловливает их жизнеспособность.  [c.13]


Смотреть страницы где упоминается термин Системы механические — Классификация : [c.763]    [c.6]    [c.147]    [c.648]    [c.477]    [c.7]   
Справочник металлиста. Т.1 (1976) -- [ c.18 ]

Справочник металлиста Том5 Изд3 (1978) -- [ c.18 ]

Справочник металлиста Том 1 Изд.3 (1976) -- [ c.18 ]



ПОИСК



Классификация свободных механических систем

Классификация, области применения, конструктивные особенности и принципы построения технологических систем механической обработки корпусных и плоских деталей Брон)

Методы решения — Классификация Применение при колебаниях механических систем

Методы решения — Классификация колебаниях механических систем линейных с конечным

Механическая система. Классификация сил, действующих на механическую систему

Механические г Классификация

Механические системы механических систем

ОСНОВЫ АНАЛИТИЧЕСКОЙ МЕХАНИКИ Постановка задачи о движении несвободной механической системы. .Классификация связей

Потенциальная энергия и классификация свободных механических систем

Система механическая

Система — Вид 15— Классификация



© 2025 Mash-xxl.info Реклама на сайте