Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Регулирование насосов н турбины ТНА

Для современных турбин ТЭС и АЭС разработаны новые маслонасосы. Для работы в системах регулирования серии турбин ПО Харьковский турбинный завод служат насосы типа МВ, для систем маслоснабжения — типов КМ и МКВ, Технические характеристики этих насосов приведены в табл. 9.11.  [c.284]

Рабочей жидкостью в системе регулирования является масло. При пуске газовой турбины в эксплуатацию работает пусковой масляный насос 1. Для улучшения работы системы смазки и регулирования в схему включены инжекторы подпора 4 vi 5. Гидравлические связи системы регулирования обеспечиваются путем изменения давления масла в пяти линиях в проточной системе основного регулирования, системах предельного регулирования, предельной защиты, регулирования приемистости (быстрого и соответствующего изменения мощности при изменении внешней нагрузки), регулирования пусковой турбины. В любую из линий масло поступает через дроссельные отверстия и сливается через отверстия с регулируемым сечением в устройствах, составляющих элементы схемы. Давления в линиях устанавливаются в зависимости от соотношения площадей подвода и слива масла.  [c.235]


Система регулирования пусковой тг/рб ны снабжается маслом от главного масляного насоса 3 через шайбу, установленную перед электромагнитным переключателем 28 Система регулирования пусковой турбины состоит из расцепной муфты 26, клапана пускового газа 29, приводимого в действие серводвигателем, и регулятора скорости пусковой турбины 30.  [c.238]

Водоснабжение. При установке циркуляционных насосов турбин в центральных или береговых насосных, регулирование циркуляционной воды, подаваемой к турбинам, сохраняется индивидуальным для каждого конденсатора и осуществляется, как и в случае установки циркуляционных насосов, в машинном зале, со щита управления турбогенератора.  [c.477]

Назначение турбинного масла — смазка подшипников и заполнение системы регулирования паровых турбин, а также заполнение систем смазки и регулирования турбокомпрессоров и насосов, имеющих циркуляционную систему смазки.  [c.408]

Кроме надежности, центробежные насосы имеют запас производительности, позволяющий использовать их одновременно как датчик системы регулирования и насос системы смазки и охлаждения установки. Эти насосы обладают равномерностью подачи, что особенно важно при требовании обеспечения регулятором малой степени неравномерности. По этим причинам системы регулирования мощных турбин имеют центробежные насосы — тахометры.  [c.137]

Как было показано выше, для получения большой глубины регулирования по моменту необходимо не только варьировать величину момента, передаваемого потоком жидкости, поступающим с насоса на турбину, ио также изменять величину момента, передаваемого с насоса турбины за счет сил жидкостного трения.  [c.188]

На основе принципа симметрии распределения давлений по поверхности рабочих колес или же симметрии давления в проточной части нельзя обеспечить полное уравновешивание осевых сил вследствие невозможности осуществления полной симметрии. Необходимо установить упорный подшипник, который воспринимает неуравновешенную часть осевой силы. В процессе эксплуатации уплотнения изнашиваются и в связи с этим нарушается симметрия поля давлений, поэтому подшипники применяются двустороннего действия. В качестве примера на рис. 38 показана гидромуфта мощностью 4000 кВт при Пн = = 3000 об/мин. Муфта предназначена для привода центробежного насоса турбинного агрегата и регулирования частоты вращения его вала. Как видно из рис. 38, это сдвоенная гидромуфта, имеющая две параллельные проточные части, образованные двойным ротором турбинного колеса и двумя насосными колесами. Такая сдвоенная конструкция позволяет уравновесить  [c.79]


Центробежный масляный насос на валу турбины может быть выполнен без трущихся элементов, что резко увеличивает надежность работы насоса, а следовательно, и системы маслоснабжения. Кроме того, производительность центробежного насоса зависит от сопротивления на выходе, что используется в системах регулирования. Вступление в действие регулирования уменьшает гидравлическое сопротивление системы, благодаря чему автоматически возрастает подача насоса. При этом поступление масла в систему смазки практически не снижается. На таком принципе решен вопрос быстродействия гидродинамических систем регулирования паровых турбин [18],  [c.148]

За исключением маломощных питательных насосов, имеющих кольцевую смазку подшипников, все современные питательные агрегаты имеют систему принудительной смазки, так как требуют значительного количества масла для смазки подшипников, зубчатых муфт, редукторов и наполнения гидромуфты. Для насосов с турбинным приводом необходимо также обеспечить подачу масла в систему смазки и регулирования приводной турбины.  [c.236]

После этого, как и в первом случае, проверяют работу турбины и, если ненормальностей в ее работе нет, подготовляют к работе стопорный клапан и с помощью синхронизатора медленно открывают его и регулирующий клапан. Когда частота вращения становится нормальной, останавливают пусковой и резервный масляные насосы и, устранив неполадки в электрической части, синхронизируют и включают генератор в сеть. Прн первой же возможности систему регулирования этой турбины проверяют и испытывают на сброс нагрузки.  [c.181]

Принцип регулирования тяги (давления в камере сгорания) в ЖРД с дожиганием основан на изменении энергетического баланса системы насосы — турбины и переходе двигателя на новую энергетически равновесную точку работы.  [c.327]

Вместе с этим интенсивно ведутся исследования процессов в других агрегатах и элементах ЖРД — газогенераторах, насосах, турбинах, системах наддува баков и бустерных ТНА, в агрегатах управления и регулирования.  [c.350]

Другим преимуществом турбин является легкость ее соединения с лопаточными насосами. Турбина позволяет получить высокую мощность, приходящуюся на единицу расхода рабочего тела, а это очень важно, как будет показано ниже, когда рабочее тело турбины выбрасывается, минуя камеру сгорания. Вопросы регулирования турбины также решаются сравнительно легко. Поэтому турбина является единственным типом двигателя, применяемым для привода насосов ЖРД. Угловая скорость ее вала может быть более 4000 рад/с.  [c.19]

РЕГУЛИРОВАНИЕ НАСОСОВ И ТУРБИНЫ ТНА  [c.298]

Система подачи на самолетных двигателях применяется насосная с приводом насосов турбиной. Самолетные ЖРД должны допускать регулирование тяги в полете, а также многократное вклю-  [c.30]

Винтовые насосы и гидродвигатели применяют в объемных гидроприводах, гидравлических системах регулирования паровых и гидравлических турбин, в нефтяной промышленности.  [c.353]

Применяется также черпаковая схема регулирования, например, в гидромуфте МГ-2-600 (рис. 9.11). Вал электродвигателя посредством зубчатой муфты соединяется с ведущим (насосным), а вал насоса — с ведомым (турбинным) ротором гидромуфты. Насосное и турбинное колеса 2 изга-  [c.236]

Ответственным оборудованием на тепловой электростанции являются масляные насосы. Масляные насосы предназначены для маслоснабжения систем смазки турбины и генератора и системы регулирования.  [c.282]

Характеристика насоса в процессе регулирования получается из последовательного ряда характеристик при высоких значениях к. п. д. и имеет обратную прозрачность (штрих-пунктир). Питание подводится через корпус и отверстия в ступице турбины. Жидкость отводится через отверстие в корпусе за первым направляющим аппаратом.  [c.221]

Изменение характеристики гидромуфты, а следовательно, и регулирования с помощью ее можно произвести, установив в проточной части гидромуфты перегородки — шиберы или раздвинув колеса насоса и турбины. Последний вариант возможен, но он усложняет конструкцию и увеличивает осевые размеры, поэтому он малоэффективен. Первый вариант имеет довольно широкое применение. В данном случае искусственно изменяется проточная часть.  [c.278]


В настоящее время на всех турбинах большой мощности применяют более совершенную гидродинамическую систему регулирования. В СССР такая система регулирования разработана Всесоюзным теплотехническим институтом (ВТИ) и ЛМЗ. В этой системе скоростной центробежный регулятор заменен масляным центробежным насосом, связанным с валом турбины, что позволяет отказаться от применения для системы регулирования червячной пары. В системе регулирования использовано для получения импульса то обстоятельство, что напор, создаваемый центробежным насосом, пропорционален квадрату числа оборотов. На рис. 31-18 представлена принципиальная схема гидродинамического ре-  [c.360]

Схема маслоснабжения ГТУ-750-6 показана на рис. 102. Во время работы установки главный масляный насос 2 подает масло с расходом Q под давлением р через сдвоенный клапан 3 и оно распределяется по маслопроводам на смазку и регулирование. Одна часть масла (( . ) поступает к инжектору насоса 1, который создает подпор во всасывающем патрубке главного масляного насоса для обеспечения надежной его работы, другая (Q ) — к инжектору смазки 6, который подает масло на смазку подшипников турбины, компрессора и редуктора под давлением 0,2—  [c.232]

Перед пуском должны быть отключены от газопровода и пункта регулирования ПР газовые турбины ТВД и ТНД), для чего закрывают задвижки 10 и 11 (рис. 105), а также от магистрального газопровода центробежный нагнетатель ЦБН, для чего закрывают задвижки 13, 14, 16. Помимо этого из всей системы должен быть удален газ, для чего открывают задвижки свечей 4, 9,17, закрывают стопорные Ki и СК и регулирующие РК клапаны камеры его рання и турбодетандера, краны дежурной горелки 7 и запальника 5. Пусковое устройство и регулятор скорости должны находиться в начальном положении. Затем включают пусковой и рабочий масляный насосы, проверяют температуру масла, систему уплотнения и регулирования, вводят в зацепление расцепную муфту турбодетандера.  [c.241]

При пуске и остановке масло в систему регулирования и на смазку подшипников турбины подает пусковой центробежный насос, который находится под уровнем масла, благодаря чему создаются некоторый подпор на всасывании и постоянная готовность к пуску.  [c.53]

Из-за значительных изменений частоты вращения ротора ТНД и нагнетателя давление за главным масляным насосом в рабочем Диапазоне может изменяться от 0,4 до 1 МПа. Для нормального регулирования, а также для работы гидравлических реле осевого сдвига роторов ТНД и ТВД масло в систему регулирования поступает через регулятор давления после себя, ограничивающий повышение давления в системе свыше 0,5 МПа за счет дросселирования, осуществляемого подпружиненным золотником регулятора. При остановке турбины при неработающем пусковом насосе включается аварийный электронасос.  [c.53]

Газовая турбина ГТ-6-750 имеет отдельную от нагнетателя систему маслоснабжения, которая обеспечивает маслом узлы регулирования и смазку всех подшипников. Он состоит из масляного бака, выполняющего одновременно роль рамы установки главного масляного насоса, размещенного в корпусе заднего подшипника пускового масляного насоса с электродвигателем переменного тока аварийного масляного насоса с электродвигателем постоянного тока двух маслоохладителей инжектора маслоохладителя инжектора главного масляного насоса регулятора давления после себя обратных клапанов фильтров маслопровода и т.д.  [c.115]

При пуске и остановке масло на регулирование и смазку под давлением 0,35 МПа подается пусковым масляным насосом с подачей 1250 л/мин. При достижении турбинной частоты вращения около 4600 об/мин включается главный масляный насос, который подает масло на смазку подшипников под давлением до 0,8 МПа, а в систему регулирования под давлением 0,5 МПа. Кратность циркуляции масла 12. При остановке, снижении давления масла на смазку и отсутствии переменного тока в работу включается аварийный насос с подачей 500 л/мин, который обеспечивает смазку только подшипников давлением около 0,2 МПа.  [c.115]

Газотурбинная установка типа ГТН-6 с нагнетателем имеет общую систему маслоснабжения. Фундаментная рама-маслобак служит для размещения на ней газовой турбины, нагнетателя, блока регулирования, редуктора топливного газа, поплавкового устройства, пускового насоса, аварийного насоса и других узлов. Для охлаждения масла и воздуха применяют аппарат воздушного охлаждения, состоящий из трех горизонтальных трубных секций прямоугольной конфигурации, составленных из поперечно оребренных монометаллических, трубок. Две секции предназначены для охлаждения масла, одна — для охлаждения сжатого воздуха. Охладитель имеет вентилятор, обеспечивающий подачу воздуха на охлаждение. Вследствие расположения воздушного маслоохладителя за пределами машинного зала увеличивается длина, а следовательно, и сопротивление маслопроводов. По этой причине, а также с учетом дополнительного повышения сопротивления при загустевании масла в схеме предусмотрен специальный насос маслоохладителей с приводом от вала турбины.  [c.115]

Установившееся движение такого рода машин в кинематическом отношении очень просто и сводится либо к равномерному вращению — центробежные насосы и вентиляторы с электроприводом, турбогенераторы,— либо к ряду равномерных вращений плюс равномерное поступательное движение — лебедки, полиспасты, транспортеры. Изучение такого движения относится к вопросам кинетостатики машин. Задачей динамики машин здесь является, главным образом, изучение неустановившегося- движения (периода пуска, остановки, регулирования). Лишь вопрос о получении спокойного хода при установившемся движении быстроходных машин (паровых и газовых турбин, электрических машин) является задачей динамики машин в связи с развивающимися в быстроходных роторах машин большими силами инерции (см. гл. V), могущими оказаться неуравновешенными и нарушающими поэтому спокойный ход машины.  [c.6]


В гидродинамических системах регулирования устанавливаются центробежные масляные насосы (фиг. 38). Зазоры этих насосов для турбин ВР-25 указаны на фнг. 24.  [c.228]

Взамен центробежного маятника применяется гидродинамический, основанный на использовании масляного насоса, с приводом от вала турбины, который в сочетании с дросселирующим пружинным устройством выполняет роль маятника. Находят также npn.v(eHe-ние электрические схемы регулирования, в которых электрические контуры и реле заменяют центробежный маятник и распределительное устройство, управляющее золотником регулятора.  [c.313]

Потеря напряжения на шинах 380 в приводит к остановке всех насосов турбинной установки, кроме питательных и конденсатных. Наиболее опасна в данном случае остановка насосов газоохладителей генератора, так как при отсутствии подачи воды на охлаждение генератор не может нести нагрузку. Насосы смазии и регулирования турбины (на блоках мощностью 300Л1вг) и масляные насосы уплотнений генератора имеют резервные агрегаты, питаемые от аккумуляторных батарей постоянным током.  [c.179]

Функциональная обратимость конструкции достигается не только путем смены отдельных деталей и узлов базовой конструкции, но и посредством ее регулирования. В этой связи представляют интерес вертикальные и горизонтальные гидротурбины, в которых на одном валу размещены мотор-генератор и насос-турбина. В зависимости от напора рабочее колесо агрегата выполняется поворотнолопастным или радиальноосевым. В часы пик нагрузки агрегат работает в генераторном режиме. При избытке энергии в системе агрегат работает в насосном режиме, пополняя запасы водохранилища.  [c.186]

Общий чугунный блок цилиндров и картера прп г = 6 и 8 цилиндров состоит из двух частей. Поршень чугунный, охлаждаемый маслом. Продувка бесклаЬан-ная контурная с эксцентричным расположением окон в плане. Продувочный насос соосный двойного действия с автоматическими клапанами. Распределительный вал расположен внизу и приводит в действие индивидуальные топливные насосы с симметричными кулачными шайбами, пусковые распределители и центробежный однорежимный регулятор прямого действия. Система охлаждения замкнутая, двухконтурная, с автоматическим регулированием температуры воды. Система смазки циркуляционная масляный насос шестеренчатого тина, подает одновременно циркуляционное масло и для охлаждения поршней. Пост управления расположен на торцовом конце двигателя. Для зарядки пусковых баллонов предусмотрен компрессор, приводимый от штока продувочного насоса. Судовая модификация снабжена непосредственным реверсом. Модификация двигателя с наддувом ДНЗО/50 снабжается системой последовательного газотурбинного наддува, у которой первой ступенью служит свободный газо-турбонагнетатель ТК-30, а второй — поршневой продувочный насос. Турбина осевая ТК имеет радиально направленные лопатки параболического профиля.  [c.19]

Главный масляный насос используется в качестве регулятора скорости. Во всасывающий патрубок насоса масло поступает от напорного маслопровода смазки главной турбины (К-300-240-1) с давлением 0,15 МПа (1,5 кгс/см ). Насос развивает давление 1,03 МПа (10,5 кгс/см2) при 6000 об/мин. Рабочей жидкостью в системе регулирования служит негорючее масло Иввиоль-З , поступающее на системы регулирования главной турбины.  [c.170]

На фиг. 5-54 представлена одна из простейших систем дроссельного регулирования конденсащюнных турбин. Система состоит из центробежного регулятора скорости 1, муфта которого 6 с помощью рычага 7 шарнирно с1 -язан,а с штоко.м 2 масляного золотника Н и со нпоком 15 сервомотора 3. На то.м же ниоке расположен дроссельный клапан 5. Трубопровод 10 соединен с напорной линией масляного насоса, а к фланцу 14 золотника  [c.341]

У турбины ЛМЗ в системе регулирования применяется негорючая жидкость Иввиоль-3, у турбины ХТГЗ—конденсат, а системы смазки работают на обычном турбинном масле. Системы регулирования этих турбин имеют свои насосы, охладители рабочей жидкости, фильтры, трубопроводы и другие устройства. Маслоохладители турбин УТМЗ встроены в масляные баки.  [c.132]

Установки с турбонасосами имеют систему централизованной смазки от общей маслосистемы турбогенератора. Такая система смазки питательного агрегата оказывается более простой и надежной. Однако в питательных агрегатах с турбоприводом, помимо масла низкого давления, используемого в системе смазки, необходимо иметь масло высокого давления для схемы регулирования приводной турбины. Для этой цели агрегат имеет свою маслосистему, состоящую из главного масляного насоса-регулятора, установленного на валу турбины, пускового маслонасоса, М асляного бака, перепускного клапана, арматуры и маслопроводов.  [c.237]

Гидропривод вентилятора состоит из четырех основных сборочных единиц вала ведущего 3 с механизмом регулирования, вала турбинного 27, вала вертикального 23, насоса маслооткачивающего и ряда деталей, собираемых в корпус 34. Корпус представляет собой механически обработанную отливку из серого чугуна. Корпус имеет две полости. В первой при сборке монтируется гидроаппарат, во второй — конический редуктор с валами. Эти полости соединены отверстием для сбора масла в полости. Часть корпуса, образующая полость редуктора, имеет прямоугольную коробчатую форму, на боковой вертикальной стенке которой имеется прямоугольный проем — люк для регулировки и проверки качества зацепления конических шестерен при сборке редуктора. После окончательной сборки гидропривода люк закрывают крышкой 46 (см. сечение Г — Г) с прокладкой и затягивают гайки на шпильках. Другая часть корпуса, образующая полость гидроаппаратов, имеет цилиндрическую форму, переходящую внизу в прямоугольную. Наружная поверхность этой части корпуса имеет сбоку приливы, образующие после механической обработки лапы для крепления гидропривода на фундамент при установке на раму тепловоза. Вверху корпус имеет прилив, в котором выполнен люк-проем, служащий для соединения чаши 15 с насосным колесом при сборке и креплении ее гайками на шпильках. После сборки гидропривода люк-проем закрывают крышкой 16 с уплотнительной прокладкой и затягивают гайки на шпильках. Для соединения с атмосферой и уравнивания давлений в верхней точке корпуса установлен сапун 18. Внизу этой части корпуса имеется отверстие с резьбой, в котором через переходную  [c.107]

Задача VIII-9. В регуляторе скорости гидротурбины применен так называемый гидравлический маятник. При изменении числа оборотов регулируемой турбины изменяется расход жидкости, прокачиваемой насосом маятника через калиброванную трубку, вследствие чего изменяется сила давления на поршень, и последний, меняя поджатие пружины, оказывает воздействие на систему регулирования.  [c.211]

Регулирование изменением частоты вращения насоса вызывает изменение его характеристики, и, следовательно, изменение рабочего режйма (рис. 7.33)- Для осуществления регулирования изменением частоты вращения необходимы двигатели с переменным числом оборотов. Такими двигателями являются двигатели внутреннего сгорания, паровые и газовые турбины и электродвигатели постоянного тока. Наиболее распространенные в технике электродвигатели с короткозамкнутым ротором практически не допускают изменения частоты вращения.  [c.195]


На рис. 99 показан продольный разрез блока турбогруппы ГТУ-750-6 (НЗЛ), который состоит из пусковой газовой турбины (турбодетандера) 1, главного масляного насоса 2, валоповорот-ного устройства 3, осевого компрессора 6, газовой турбины высокого давления (ТВД) 11, газовой турбины низкого давления (ТНД) 13. Эти агрегаты смонтированы на общей раме 16, внутренняя полость которой используется в качестве маслобака. Вся турбогруппа поставляется на площадку компрессорной станции в собранном виде, что значительно ускоряет и улучшает качество монтажа. Кроме этого, в состав установки входят камера сгорания, воздухонагреватель, системы маслопроводов, автоматизированного регулирования, автоматического управления, защиты и контроля и вспомогательное оборудование, необходимое для нормальной работы установки.  [c.223]

Индивидуальная система маслоснабжения (рис. 25) предназначена для смазки подшипников газоперекачивающего агрегата и создания герметичных уплотнений нагнетателя, а также для смазки систем гидравлического уплотнения и регулирования установки [11]. Масляная система состоит из маслобака, пускового 3 и резервного 4 масляных насосов, инжекторных насосов 5, 6. Подачу масла к деталям обеспечивает главный масляный насос /, во время пуска и остановки — пусковой масляный насос 3. Через сдвоенный обратный клапан 2 часть масла поступает к инжекторному насосу 5 для создания подпора во всасывающем патрубке главного масляного насоса и обеспечения его надежной работы, а часть масла — к инжекторному насосу 6 для подачи масла под давлением 0,02—0,08 МПа на смазку подшипников агрегата и зацепления редуктора. Масло после насосов подается в гидродинамическую систему регулирования агрегата, давление в которой поддерживает регулятор 9. Часть масла после регулятора, пройдя три маслоохладителя 10, подается на смазку ради ьно-упорного подшипника нагнетателя. При аварийном снижении давления в системе смазки установлены два резервных насоса 4 и 7 с электродвигателями постоянного тока. Причем насос 4 подключен к маслопроводу смазки турбин, компрессора и редуктора, а насос 7 — к линии смазки радиально-упорного подшипника. В системе маслоснабжения имеется специальный центробежный насос — импеллер 12, служащий для выдачи импульсов гидродинамическому регулятору скорости при изменении частоты вращения вала турбины низкого давления. Частота вращения импел-  [c.114]

Система маслоснабжения ГТУ типа ГТН-16 представлена на рис. 26. Рама, на которой устанавливают газовую турбину 11, нагнетатель и узлы регулирования, является также масляным баком 1. Внутренняя емкость разделена на отсеки грязный горячий 14-, чистый горячий 75 чистый холодный 16. Масло из подшипников сливается в грязный отсек и через фильтр 13 попадает в горячий чистый отсек. Фильтры попеременно вынимают для очистки без остановки агрегата. Из горячего чистого отсека масло инжекторным насосом 3 маслоохладителей подается в центробежный насос 5, затем в воздушный охладитель 7, после чего сливается в чистый холодный боковой отсек. Из чистого отсека главным 6 (или пусковым 4) насосом масло подается в систему смазки и регулирования 10 через блок фильтров тонкой очистки 8. Через фильтры тонкой очистки масло, идущее на инжектор главного насоса, не проходит. Перед подшипниками и узлами регулирования имеются предохранительные сетки 9, а для очисткц масла и уменьшения скорости засорения штатных фильтров используют центрифугу 2. Отбор масла на центрифугу 2 можно осуществлять из грязного отсека или из газоотделителя. Масло сливают из пяти точек маслобака (двух из грязного и трех из чистого отсеков).  [c.116]

Органы парораспределения, регулятор скорости, синхронизатор, золотники, сервомоторы, маслопроводы, рычаги системы регулирования, приборы защиты турбины от повышения числа оборотов, понижения давления масла, осевого сдвига ротора, а также приборы сигнализации, блокировки и автоматического запуска элек-тромасляного насоса собирают, руководствуясь заводскими чепте-жами, формулярами и указаниями.  [c.224]

Фиг, 33. Центробежный масляный насос гидродинамической системы регулирования турбин ВР-25-1 и ВР-25-2 ХТГЗ.  [c.228]


Смотреть страницы где упоминается термин Регулирование насосов н турбины ТНА : [c.159]    [c.356]    [c.219]    [c.356]   
Смотреть главы в:

Теория и расчет агрегатов питания жидкостных ракетных двигателей Издание 3  -> Регулирование насосов н турбины ТНА



ПОИСК



Регулирование насоса

Регулирование турбины

Турбины (насосы)



© 2025 Mash-xxl.info Реклама на сайте