Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Постановка задачи, системы координат и уравнения движения

ПОСТАНОВКА ЗАДАЧИ, СИСТЕМЫ КООРДИНАТ И УРАВНЕНИЯ ДВИЖЕНИЯ  [c.80]

Рассмотрим решение этой задачи для движения точки по поверхности и кривой линии. Дифференциальные уравнения при этом выражают в той системе координат, которая наиболее соответствует конкретной задаче. Разберем постановку и решение задачи в прямоугольной декартовой системе координат.  [c.225]


Это и будут уравнения Маджи [ ]. Они вместе с уравнениями (77) с аналитической точки зрения дают в дифференциальной форме полную постановку задачи о движении для системы 5 с двусторонними идеальными (в том числе и неголономными) связями. Действительно, если представим себе, что в уравнения (82) вместо величин q подставлены их выражения (77) через е и и выполнено дифференцирование по t, то будет очевидно, что после выполнения всех преобразований в уравнениях останутся, помимо q, е, t, только v производных ё от е, которые войдут в них линейно. Замечания, совершенно аналогичные тем, которые были сделаны в п. 36, приводят к выводу, что полученные таким образом из системы (82) v уравнений разрешимы относительно этих v производных е, так что мы заключаем, что уравнения (77) и (82) вместе составляют дифференциальную систему уравнений первого порядка, приводимую к нормальному виду относительно я-f-v неизвестных функций времени q VI е. Если конфигурация и состояние движения материальной системы в начальный момент заданы, т. е. заказаны произвольные численные начальные значения q (позиционных координат)и е (кинетических характеристик), то движение неголономной системы будет однозначно определено.  [c.326]

В автономных системах действующие силы зависят только от состояния системы (обобщенных координат и обобщенных скоростей), и в дифференциальные уравнения движения время явно не входит. В дифференциальные уравнения движения неавтономных систем время входит явно. Если для автономной нелинейной системы с несколькими степенями свободы можно заранее указать с достаточной точностью законы изменения во времена некоторых из обобщенных координат, то число дифференциальных уравнений движения соответственно уменьшается в этих уравнениях явно появляется время, и систему в целом можно рассматривать как неавтономную. На этом основана постановка задачи о вынужденных колебаниях, когда предполагают, что движение колебательной системы не оказывает обратного влияния на возбудитель колебаний, т. е. действие возбудителя представляет собой некоторую заданную функцию времени ( идеальный возбудитель ). При учете обратного влияния система обычно оказывается нелинейной и автономной, а число обобщенных координат большим, чем в приближенном анализе, необходимость такого учета зависит от свойств и параметров системы (см. гл. VII).  [c.21]

Задача об устойчивости заданного движения материальной системы может рассматриваться с различных точек зрения. Речь может идти, во-первых, о разыскании оценок отклонений обобщенных координат и обобщенных скоростей от их значений в опорном движении в любой момент времени, когда начальные возмущения достаточно малы. Об основывающемся на этом воззрении определении устойчивости движения по Ляпунову кратко говорилось в п. 11.10, а составлению уравнений возмущенного движения — уравнений в вариациях — были посвящены пп. 11.14—11.17. Во-вторых, может рассматриваться лишь орбитальная устойчивость, когда вопрос о протекании во времени возмущенного движения отодвигается на второй план, а изучаются лишь траектории возмущенного движения и устанавливаются критерии их близости к опорной траектории. При этом часто, ограничивая постановку задачи, рассматривают только консервативные возмущения — такие, при которых на возмущенных траекториях сохраняется то же самое значение постоянной энергии /г, что и на опорной траектории. Принцип стационарного действия Лагранжа оказывается при этой постановке задачи наиболее приспособленным методом исследования орбитальной устойчивости, поскольку траекториями как опорного, так и возмущенного движений являются геодезические линии многообразия / элемента действия, т. е. простейшие геометрические  [c.721]


Наиболее общая постановка задачи об устойчивости систем была дана А. М. Ляпуновым в 1892 г. При изложении теории устойчивости в смысле Ляпунова различают невозмущенное и возмущенное движения системы. При этом состояние системы описывается обобщенными координатами Уk, определяемыми из дифференциальных уравнений  [c.85]

Р. Я. Ивановой [23] была рассмотрена задача о качении вязкоупругого цилиндра по основанию из того же материала. Задача решалась в плоской постановке при исходных физических интегральных зависимостях наследственного типа. Предполагалось, что движение катка начинается в момент времени —оо и продолжается с постоянной скоростью объемное последер вие отсутствует. Путем привлечения принципа Вольтерра задача решалась в рамках теории упругости с помощью метода Н. И. Мусхелишвили [38]. Полученные при этом два сингулярных уравнения типа Фредгольма содержат реологический оператор, который выражается через резольвенту ядра наследственности при сдвиге. После введения подвижной системы координат и замены дуги окружности катка дугой параболы одно из этих интегральных уравнений, которое соответствует мнимой части соотношения Мусхелишвили, удалось привести к форме, даюшей возможность решить его по методу Карлемана. Для конкретности резольвента ядра наследственности была взята в внде совокупности простых экспоненциальных ядер. Даже в этом случае получение численного результата было связано со значительными вычислительными трудностями. Решение выписано в квадратурах вычисление их осуществлялось приближенно применительно к материалам, обладающим достаточно большим временем релаксации.  [c.403]

Угловое положение спутника, т.е. положение его строительных осей Ох, Оу, Oz относительно опорной системы координат OXoY Zq при указанной выше постановке задачи удобно задавать с помощью системы самолетных углов (рис. 4.1, а). Соответствующая матрица направляющих косинусов приведена в табл. 4.1. Применение таких углов при стабилизации спутника вращением имеет ряд преимуществ по сравнению с традиционным использованием углов Эйлера, а именно 1) нет особенности в кинематических уравнениях при угле нутации = 0 2) углы ф, у более удобны и наглядны при описании движения оси вращения при малых отклонениях, а также при описании у1фавляющих сигналов, поступающих с оптических датчиков ориентации 3) позволяют применить более компактную комплексную форму записи уравнений движения.  [c.82]

Дальнейшее развитие проблемы п тел принадлежит Ю. Д. Соколову многочисленные исследования которого посвящены изучению особых траекторий системы свободных материальных точек, взаимно притягивающихся или отталкивающихся с силами, пропорциональными произвольной функции взаимных расстояний. Соколов обобщил на случай произвольных сил взаимо-114 действия в задаче п тел теорему Пенлеве о минимуме взаимных расстояний, теорему Шази о парном соударении в неизменяемой плоскости, теорему Дзио-бека о движении точек в неподвижной центральной плоскости при аннулировании кинетического момента системы относительно ее центра масс и теорему Слудского—Вейерштрасса об общем соударении тел. Он установил нижнюю границу радиусов сходимости разложений координат точек системы около момента регулярного движения. Обобпщв уравнение Лагранжа — Якоби, он исследовал поведение квадратичного момента инерции при стремлении t к некоторому особому моменту ti или оо. Соколов изучил траектории парного соударения в общей задаче трех тел, исследовал характер особых, Точек интегралов прямолинейного движения. Рассматривая ограниченную задачу трех тел в обобщенной постановке, он исследовал поведение искомых функций и доказал существование решения задачи, установил инвариантное соотношение, характеризующее условие соударения. Результаты этих исследований Соколов успешно применил к решению задач о притяжении к неподвижному и равномерно вращающемуся центрам.  [c.114]

Следует указать, что задача Гюльдена относится к динамике систем с переменными массами формально, поскольку в ней не учтены особенности законов движения при непрерывном движении масс тел (материальных точек). В строгой математической постановке задачу двух тел переменной массы в небесной механике сформулировал в 1891 г. немецкий астроном X. Зеелигер в работе по динамике соударения и разъединения планетарных масс. Зеелигер рассматривает движение системы тел в условиях при (от) соединения дополнительной массы путем мгновенного неупругого столкновения. При выводе уравнений автор исходит из принципа сохранения движения центра тяжести системы. Зеелигер отмечает, что уравнения движения можно получить, разлагая реальные ускорения отдельных точек на две составляющие, обусловленные соответственно внешними силами с при (от) соединяющимися массами. Лля второй части ускорений он записывает в проекциях на оси координат выражение  [c.42]


В общем случае изучение механических процессов в начально-деформированных телах необходимо проводить в рамках нелинейной теории упругости. Однако, множество процессов, происходящих в начально-деформированных телах, можно рассматривать в рамках линеаризованной теории наложения малых деформаций (возмущений) на конечные деформации (начальное состояние) в предположении, что возмущения малы. Традиционно [30, 41, 42] различают три состояния тела естественное (ненапряженное) состояние (ЕС), начально-деформированное состояние (НДС) и актуальное (возмущенное по отношению к НДС) состояние. При этом особое значение приобретает выбор системы координат, которая может быть связана либо с естественной конфигурацией (система координат Лагранжа или материальная система координат), либо с актуальной конфигурацией (система координат Эйлера) [30, 41, 42]. Линеаризованные уравнения движения существенным образом зависят как от выбора системы координат, так и от выбора определяющих соотношений, поскольку имеет место возможность определения напряженного состояния различными тензорами (Коши, Пиола, Кирхгофа и т.д.) и множественность их представления через меры деформации (Коши-Грина, Фингера, Альманзи) или градиент места. Более детально с особенностями постановки задач для преднапряженных тел можно ознакомиться в монографиях А. И. Лурье [41], А. Лява [42] и А. Н. Гузя [30].  [c.290]

Из всего известного многообразия форм уравнений движения и связанных с ними кинематических параметров выбраны те, которые позволяют проводить аналитические исследования. Так, при решении задачи о движении тела в линейной постановке используется система уравнений, записанная в связанных координатах. Для тел, имеющих плоскость симметрии, приводятся уравнения движения в полусвязанной системе координат. Для осесимметричных или близких к ним телам выводятся уравнения движения в координатах, связанных с пространственным углом атаки.  [c.10]

Форма уравнений движения, используемых в численных расчётах или аналитических вычислениях, во многом предопределяет возможность успешного и экономного решения задачи. Естественно, что каждому варианту постановки задачи соответствует своя, наиболее рациональная форма записи уравнений. Поэтому здесь не будет использована некая универсальная система уравнений. Так, при решении задачи о движении тела в линейной постановке удобно использовать систему уравнений, записанную в связанных координатах. При исследовании движения тела с плоскостью симметрии предпочтительнее использовать уравнения в полусвязанной системе координат, а при изучении движения осесимметричного тела при больших углах атаки удобно записать уравнения в осях, связанных с пространственным углом атаки, что облегчает применение аналитических и асимптотических методов. Наконец, для тела произвольной формы, совершаюш,его свободное движение в атмосфере при произвольных углах атаки, наиболее экономичной, с точки зрения объёма вычислений при интегрировании, является система уравнений в направляюш,их косинусах, которая впервые была представлена в работе [41.  [c.20]

Аналогичную, но менее общую форму имеют уравнения движения вокруг неподвижной точки свободного четырехмерного твердого тела в системе координат, связанной с телом. С этой точки зрения задача рассматривалась в прошлом веке В. Фрамом (1875 г.) и Ф. Шоттки (1891 г) [21, 211, 265] (см. 2 гл. 5). Постановка задачи о движении четырехмерного твердого тела восходит к А. Кэли.  [c.183]

Опыт лежит в основании законов механики решения конкретных задач прямо или косвенно проверяются опытным путем. Но опыт, кроме того, во многих случаях позволяет сформулировать постановку задачи и внести в нее разумные упрош,ения. В результате наблюдений над каким-нибудь явлением (движением какого-либо объекта) мы можем получить предварительные сведения ( предварительную информацию ). Это дает нам возможность уяснить себе в общих чертах характер движения. Так, например, наблюдения над движениями небесных тел показывают, что их движения не вполне точно согласуются с законами Кеплера налицо малые отклонения от основного кеплеровского движения. Движение какой-либо системы может оказаться наложением колебательного, близкого к периодическому, движения на некоторое среднее движение. Амплитуды колебаний могут либо сохранять свою величину в течение достаточно продолжительного времени, либо заметно затухать. Наблюдение за движением волчка указывает нам на стабилизирующее значение быстрого собственного вращения и т. п. Подобная предварительная информация позволяет в ряде случаев сравнить величины членов в уравнениях движения и, отбрасывая второстепенное, выделить главное. Таким образом, выделяется основное — невозл /ы<е ное — состояние движения (это может быть, в частности, состояние покоя), на которое накладываются возмущения. Подобное выделение имеет смысл, если сами возмущения (приращения координат точек и приращения скоростей) численно малы ).  [c.427]


Смотреть страницы где упоминается термин Постановка задачи, системы координат и уравнения движения : [c.87]    [c.7]    [c.39]    [c.102]   
Смотреть главы в:

Системы ориентации и стабилизации космических кораблей Изд2  -> Постановка задачи, системы координат и уравнения движения



ПОИСК



656 —• Постановка задачи

Движение системы

Задача п тел уравнения движения

К постановке зг ачи

Координаты системы

Постановка задачи и уравнения движения

Системы Уравнение движения

Системы координат . 4. Уравнения для

Уравнения в координатах



© 2025 Mash-xxl.info Реклама на сайте