Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Состояние, процедура

Орган по сертификации должен устанавливать и поддерживать в рабочем состоянии процедуры управления всеми документами и данными, относящимися к его функциям.  [c.636]

Минимизация числа внутренних состояний— процедура абстрактного синтеза, основанная на поиске эквивалентных состояний МПА и их отождествлении. Эквивалентными называются состояния, начиная с которых автомат функционирует одинаково, т. е. выдает одну и ту же последовательность выходных сигналов при любых входных последовательностях. Выполнение этой процедуры ведет к сокращению аппаратурных затрат и повышению надежности МПА.  [c.107]


Если в задачах оптимального проектирования все переменные проектирования и состояний являются непрерывными, то для решения задач параметрического синтеза могут быть использованы методы решения задач нелинейного программирования, основанные на хорошо разработанных процедурах поиска экстремума функций. Однако не всегда все элементы в проектируемых объектах могут принимать любые значения в пределах некоторой допустимой области. Это связано прежде всего со стандартизацией и унификацией комплектующих изделий в различных областях техники. Так, в радиотехнике параметры резисторов и конденсаторов могут принимать только определенные значения из разрешенной шкалы номиналов, в строительстве плиты перекрытия, балки и другие комплектующие изделия имеют ряд определенных стандартных размеров. Кроме того, на параметры разрабатываемых объектов также накладывается ряд ограничений, учитывающих условия стандартизации и унификации. Так, в электротехнике и радиоэлектронике разрешается использовать только определенные  [c.274]

При большой степени детализации маршруты представляются состоящими из проектных процедур, например для БИС имеем разработку алгоритма функционирования, абстрактный синтез конечного автомата, структурный синтез функциональной схемы, верификацию проектных решений функционально-логического проектирования, разбиение функциональной схемы, ее покрытие функциональными ячейками заданного базиса, размещение, трассировку, контроль соблюдения проектных норм и соответствия электрической и топологической схем, расслоение общего вида топологии, получение управляющей информации для фотонаборных установок. Возможна еще большая детализация маршрута с представлением проектных процедур совокупностями проектных операций, например структурный синтез функциональной схемы БИС можно разложить на следующие операции поиск эквивалентных состояний конечного автомата, реализацию памяти, кодирование состояний, определение функций выхода и возбуждения элементов памяти, синтез комбинационной части схемы.  [c.357]

Для металлов, имеющих сильную склонность к переохлаждению до спонтанного образования центров затвердевания, таких, как галлий, олово, сурьма, описанного выше охлаждения гнезда термометра недостаточно. Получающееся при этом падение температуры стенки гнезда термометра не приводит к возбуждению кристаллизации, поскольку эти металлы могут оставаться в переохлажденном жидком состоянии в случае сурьмы примерно на 40 К ниже равновесной температуры затвердевания. Интенсивное охлаждение наружной стенки тигля потоком аргона или азота [21] позволяет преодолеть эти особенности металлов. В этом случае тигель, но не сколь-нибудь значительный участок печи, должен быть быстро охлажден на несколько десятков градусов. Этого достаточно для возникновения центров кристаллизации по всей внутренней стенке тигля. Выделяющейся теплоты перехода достаточно для повышения температуры образца и тигля до температуры затвердевания в течение нескольких минут. Достижение плато затвердевания образца происходит в результате быстрого роста дендритов, что всегда наблюдается при затвердевании из переохлажденного состояния. Затем рост дендритов прекращается и оставшийся металл затвердевает с гладкой поверхностью раздела фаз, медленно продвигающейся к гнезду термометра. Альтернативный метод [55] возбуждения центров кристаллизации таких металлов, как олово и сурьма, состоит в удалении тигля с образцом из печи при достижении в ней температуры затвердевания и помещении его в другую печь, имеющую температуру примерно на 90 °С ниже. Как только из-за выделяющегося при начале затвердевания тепла прекратится охлаждение тигля с образцом, он переносится в исходную печь, имеющую температуру лишь на несколько градусов ниже температуры затвердевания. Успех подобной процедуры ярко демонстрирует выделение энергии при переходе от жидкого состояния к твердому.  [c.177]


Основа внешнего проектирования — правильный учет современного состояния техники, возможностей технологии, прогноз их развития иа период времени, не меньший жизненного цикла объекта. Наряду с техническими факторами необходимы учет экономических показателей, прогноз стоимости и сроков проектирования и изготовления. На основе изучения состояния и перспектив научно-технического прогресса группа экспертов формулирует первоначальный вариант ТЗ на систему. Оценку выполнимости сформулированного ТЗ и рекомендации по его корректировке получают с помощью проектных процедур внутреннего проектирования.  [c.20]

В отличие от табличного метода, для которого фундаментальное дерево графа эквивалентной схемы выбиралось из условия минимальной насыщенности М-матрицы, в методе переменных состояния используется нормальное дерево графа (рис. 3.11) —фундаментальное дерево, в которое ветви включаются согласно следующему приоритету типа Е, типа С, типа R, типа L и типа I. Использование такого дерева позволяет упростить процедуру получения системы уравнений в нормальной форме Коши.  [c.141]

Режим выполнения специальных функций. Режим объединяет все оставшиеся функции системы 7, СБ — сообщение оператору ЭВМ 7, СВ — связь с оператором ЭВМ. Эти функции обеспечивают передачу на главную консоль ОС ЕС сообщения пользователя. После получения ответа оператора пользователь может выйти в исходное состояние или продолжить диалог 7, СТ — информация о работе ОС. Эта функция выдает на экран дисплея информацию о заданиях, выполняемых в данный момент операционной системой. О каждом задании сообщается 1) имя задания 2) имя щага задания (шага процедуры), выполняемого в данный момент 3) границы оперативной памяти, в которых он выполняется 4) время, оставшееся до завершения пункта задания 5) количество подключенных подзадач  [c.123]

Различные формулировки третьего закона термодинамики остаются неизменными при отрицательных абсолютных температурах, если под абсолютным нулем температуры понимать О К, как положительной, так и отрицательной температуры. Температуры + 0К и —О К соответствуют совершенно различным физическим состояниям. Для первого система находится в состоянии с наименьшей возможной энергией, а для второго — с наивысшей. Система не может стать холоднее, чем +0К, так как она не может больше отдать энергию. Она не может стать горячее, чем —О К, так как она не может больше поглотить энергию. Принцип недостижимости абсолютного нуля формулируется следующим образом невозможно с помощью любой, как угодно идеализированной процедуры за конечное число операций охладить любую систему + О К или нагреть любую систему до —О К-  [c.121]

Из всех частичных равновесных функций распределения особо важное значение имеет бинарная функция 5 2(41, Чг) (или р2(Чь Чг)), так как через нее могут быть выражены термическое и калорическое уравнения состояния и другие термодинамические функции изучаемой системы. Таким образом, в методе Боголюбова исследование равновесных систем сводится не к вычислению конфигурационного интеграла, а к решению уравнений для частичных функций распределения, что оказывается в ряде случаев значительно проще. При этом либо используется разложение функций распределения в ряд по малому параметру, либо для получения замкнутой системы s уравнений для этих функций одна из высших функций распределения приближенно выражается через низшие (процедура расцепления, или обрыва, цепочки уравнений).  [c.214]

Функции состояния 1 и 2 имеют вид (1.3.74). Решение указанных систем уравнений строим с помощью процедуры последовательных приближений. В первом приближении полагаем т = п = р = 1=, тогда компоненты корректирующего тензора равны  [c.393]

Построение диаграммы сдвига по диаграмме кручения, полученной по результатам испытания такого образца, процедура более сложная, чем по диаграмме кручения, полученной на тонкостенном образце, вследствие неоднородности напряженного состояния в нем.  [c.103]

Рекуррентная формула (3.71) позволяет в принципе указать простую процедуру получения термодинамической шкалы температур для некоторого теплового состояния ( назначается температура Т1 в виде положительного действительного числа, снабженного наименованием единицы измерения к 1 кг рабочего тела обратимого двигателя Карно в изотермическом процессе при температуре 1 подводится некоторое количество теплоты дг, рабочее  [c.84]


Вопрос о том, какому размеру усталостной трещины уделять внимание на практике, определяется условием дости ения предельного состояния тела с трещиной и возможностями методов и средств неразрушающего контроля, используемыми на практике для выявления трещин. Исходя из представлений о длительности процесса развития трещин и возможностей неразрушающих методов и средств контроля, а также доступности самих мест контроля эту проблему можно рассматривать непосредственно в рамках рассмотренного выше вопроса об относительной живучести материала. Живучесть основных силовых элементов конструкции оказывается достаточной для введения обоснованного и экономически целесообразного надежного периодического контроля. Вместе с том даже в однотипных элементах конструкций могут возникать усталостные трещины в результате повреждения поверхности детали в разных сечениях и зонах с различной концентрацией нагрузки. В этих условиях стратегия определения периодичности осмотра, выбор и обоснование метода и средств контроля не мог>т быть рассмотрены с общих позиций. Необходим анализ особенностей проведения контроля по таким различным критериям, как доступность зоны контроля, геометрия детали, месторасположение трещины, периодичность осмотров с учетом кинетики роста трещины в зоне контроля, чувствительность метода и стоимость процедуры контроля. Интенсивность осмотров и их трудоемкость могут перекрывать положительный эффект от эксплуатации элемента конструкции по принципу безопасного поврежде-  [c.65]

Можно ожидать, что для исследования такого случая следует принять состояние однородного растяжения за начальное состояние, а затем использовать теорию, развитую в разд. III. Если волокна первоначально прямолинейны и параллельны, то при реализации этой процедуры не возникает никаких трудностей. Заметим, однако, что растяжение в направлении оси Z необходимо влечет за собой сжатие в плоскости, перпендикулярной Z, если объем остается неизменным это сжатие должно происходить по направлениям, строго перпендикулярным волокнам, поскольку волокна нерастяжимы. Соответственно при ТН ком растяжении форма сечения тела плоскостью X, У) должна меняться. Это изменение эквивалентно всего лишь изменению  [c.330]

Процедура повторяется до тех пор, пока в одном из слоев не выполняется условие прочности, т. е. его деформации не достигнут предельных значений, определенных из опытов в условиях одноосного напряженного состояния. При достижении поперечными деформациями предельного значения считается, что слой способен воспринимать касательные на-  [c.150]

Если необходимо увеличить точность расчета, сохранив неизменным приращение времени, то при вычислении деформаций ползучести вместо напряжений в начале приращения времени можно использовать средние значения составляющих напряжения на этом Д/. Средние напряжения заранее неизвестны, однако могут быть получены в первом приближении путем осреднения начальных напряжений и только что полученных оценок конечных приращений. Это приближение можно улучшить при помощи итерационной процедуры, в соответствии с которой последняя оценка конечного напряженного состояния осредняется с начальным напряженным состоянием, что дает средние напряжения и новую улучшенную оценку конечного напряженного состояния [6]. При получении результатов, приведенных в данной главе, итерационные процедуры не использовались. Несмотря на это упрощение, процедура анализа оказалась вычислительно устойчивой и, несомненно, точной для больших интервалов времени. Проиллюстрируем применение метода приращений на простом примере одноосного напряженного состояния.  [c.263]

Остается определить осредненные (по композиту) приращения деформации ползучести, происходящие в течение первого интервала времени. Это делается путем вычисления системы упругих узловых сил, необходимых для удвоения приращений деформации ползучести каждого треугольного конечного элемента. Процедура включает в себя только законы a(s) компонентов композита и уравнения, связывающие узловые силы и напряжения в каждом элементе. Приложение системы узловых сил к массиву конечных элементов (с подходящими ограничениями, вытекающими из условий симметрии) и последующий упругий анализ этого массива прямо приводят к осредненным (по композиту) приращениям деформации ползучести и приращениям напряжения для первого интервала времени. Эти приращения добавляются к напряжениям и деформациям, соответствующим времени / = О, что приводит, таким образом, к напряженно-деформированному состоянию композита в момент времени t = At. Такое вычисление можно повторить п раз до получения напряженно-деформи-рованного состояния в каждом конечном элементе и в композите к моменту времени t = пМ.  [c.268]

До этого места в изложении процедуру решения проблемы и процесс проведения рассуждений представляли как последовательность событий, выполняемую из начального состояния в направлении состояния (состояний) цели. Другой способ, которым иногда пользуются, исходит из заданной цели и выполняется в обратном порядке, при этом стараются удовлетворить начальным условиям. В обратной процедуре проведения рас-суждений, известной среди специалистов по ИИ как способ рас-суждений от цели к фактам , сначала находят одно или более состояний, которые могут привести к определению цели, и проверить, достигнуто ли соответствие с начальным состоянием (состояниями). Если нет, то поиск продолжается. Для систем продукций это означает, что в этом случае части тогда согласуются между собой и соответственно части если запускаются в действие (например, если часть тогда используется для нахождения более отдаленной вершины). Конкретно выбор либо процедуры от цели к фактам , либо процедуры от фактов к цели определяется прежде всего двумя факторами — соотношением случаев ветвления с переходом назад по телу программы и случаев ветвления с переходом вперед, а также соотношением числа состояний цели и числа начальных состояний. Другими словами, если сформированное дерево поиска в конкретной проблемной области разветвляется в значительно большей степени при прямой процедуре поиска, чем при обратной процедуре поиска, то в этом случае процедура от цели к фактам будет более целесообразной. Если разветвление в обоих направлениях приблизительно одинаково, решаюшее значение приобретат число состояний. Процедура от цели к фактам выглядит более привлекательной при решении задач синтеза сложных объектов, когда сушествует широкий спектр исходных объектов, на основе которых приводится синтез. Примером служит задача определения того, какие характеристики материала необходимы для оптимального изготовления конкретного устройства. Здесь лучше было бы начать процедуру поиска с состояния цели (требований к устройству), чем с поисков наборов характеристик для всех возможных материалов.  [c.286]


ПЕРЕМЕЩЕНИЕ в механике, вектор, соединяющий положения движущейся точки в начале и в конце нек-рого промежутка времени направлен вектор П. вдоль хорды траектории точки. ПЕРЕНОРМИРОВКА (ренормировка) в квантовой теории поля, процедура изменения параметров, входящих в ур-ния движения квант, теории поля (КТП). В кач-ве таких параметров обычно выступают массы ч-ц, константы связи, нормировка векторов состояния. Процедура П. преследует двоякую цель а) введение в ур-ния параметров, имеющих непосредств. физ. смысл б) устранение из теории бессмысленных расходящихся выражений, возникающих в процессе решения ур-ний по теории возмущений (см. Квантовая теория поля). Метод П. в КТП был разработан япон. физиком  [c.526]

Рассмотрим возможность прогнозирования зависимости S (x) по уравнению (2.22), исходя из следующей процедуры. Коэффициенты с с и Лд в (2.22) будем определять на основании.экспериментальных данных по статическому разрыву одноосных образцов в исходном состоянии (первая серия испытаний), а сравнение аналитической зависимости S (x) проведем с экспериментальными данными, полученными в третьей серии испытаний (циклический наклеп с последующим растяжением в области низких температур). На рис. 2.12 выполнено такое сравнение зависимости 5с(и), рассчитанной по уравнению (2.22) ( i = 2,27. 10- МПа-2 С2 = 4,03- 10 MHa Лд=1,87) с экспериментальными значениями 5с для стали 15Х2НМФА. Условия предварительного циклического деформирования и характеристики последующего хрупкого разрушения образцов приведены в табл. 2.1 и 2.2.  [c.81]

Если оба уча( тннка диалога одновременно находятся в активном состоянии, то такой диалог называют асинхронным (в асинхронном диалоге человек имеет возможность в любой момент времени вмешаться в ход выполнения машинной процедуры с целью ее приостановления или внесения изменений). Асинхрон 1Ый диалог распространен в прилож ении к имитационным моделям, оптимизационным процедурам, организации вычислительного процесса. В этом случае человеку со стороны ЭВМ постоянно поставляются на экран дисплея сообщения о текущем состоянии машинной процедуры. Человек, как и ЭВМ, находится в активном состоянии и при необходимости прерывает активность ЭВМ, переводя ее в пассивное состояние.  [c.108]

В настоящее время для исследования этих систем используются два разных подхода, отличающихся типом математической модели, которая отражает поведение динамической системы. При одном подходе математическая модель динамической системы 5 основывается на понятии состояния X, под которым понимается описание системы 5 в некоторый момент времени ), и на понятии оператора Т, определяющего изменение этого состояния х во времени. Оператор Т указывает процедуру, выполняя которую можно по описанию л (О в момент времени t найти описание л (/ + А ) той же системы в некоторый следующий момент времени t + Af. Если оператор Т не зависит явно от времени, то система S называется автономной, в противном случае — неавтономной. Состояние л системы S можно рассматривать как точку некоторого пространства Ф, называемого фазовым пространством системы 5. Изменению состояния х отвечает в фазовом пространстве Ф движение соответствующей T04i y, которая называется изображающей. При этом движении изображающая точка описывает кривую, назы-  [c.8]

Для оболочек с мягкими прослойками промежуточных размеров (Кр < к < к ) анализ исчерпания несущей способности на основании критериев потери устойчивости их пластического деформирования в процессе нагр> жения существенно усложняется. Фактически процедура учета описанных выше явлений, связанных с эффектом контактного упрочнения мягких прослоек, сводится к предварительному определению кривых v /(k) и S k) либо на основании обработки экспериментальных данных, либо расчетным путем по методикам /77/, после чего по соответ-ств тощим зависимостям /88/ находятся параметры Ер и т, позволяющие оценить предельное состояние конструкций по критериям потери пластической устойчивости. Однако, как будет показано несколько ниже, в целях прощения расчетньЕх методик по оценке нес> щей способности оболочковых конструкций можно пренебрегать данной процедурой уточнения процесса пластической неустойчивости конструкции в процессе их нагружения вследствие ее незначительного влияния на конечный результат.  [c.95]

На рис. 4.6,а,б приведено сопоставление эпюр напряжений полу ченных численно-графическим методом и подсчитанных с использованием соотношений (4.16) — (4.19). Как видно, имеется удовлетворительное соответствие распределений построенных по обеим мего-дикам расчета, что свидетельствчет о приемлемости подхода представления полей линий скольжения в мягких прослойках, работающих в составе толстостенных оболочек, отрезками циклоид. Кроме того, аппроксимация линий скольжения отрезками циклоид позволяет получить достаточно добные д,чя практического пользования аналитические выражения для оценки напряженного состояния и несущей способности толстостенных оболочковых конструкций. Процедура определения величины предельного перепада давлений (р q) ,ax по толщине стенки оболочковых констр кций, ослабленных продольными мягкими прослойками, сводится к определению средних предельных напряжений а р исходя из V словия их статической эквивааентноети напряжениям Gy  [c.220]

Коэффициенты (тпрИ]кд) уравнений вычисляются по формулам (2.2.23), при этом интегралы имеют вид (2.3.35) с той лишь разницей, что а заменено на Ь и а д на функции состояния а , или а< ) должны соответствовать упругому или вязкому состоянию среды. Свободные члены ALp ( кр) уравнений вычисляются по формулам (2.2.25), причем производится указанная замена функций состояния и скоростей, Б подынтегральных выражениях (2.2.26 ) необходимо заменить компоненты Т Р на АТ Р,. Решение уравнений (2.2.69) строится с помощью процедуры последовательных приближений аналогично рассмотренным случаям. В результате параметры ААтпр1, --М определены, следовательно, определены и ком-  [c.149]

Если исходный потенциал велик, то в этом случае для решения уравнения Шредингера необходимо использовать практически бесконечное количество функций типа фп. Поэтому нужно осла бить возмущающий потенциал, для чего прибегают к следующей процедуре. Рассмотрим связанные состояния в кристалле и атоме. В изолированном атоме связанные состояния характеризуются четырьмя квантовыми числами п, I, mi, tUs, совокупность которых обозначим через а. Волновая функция такого состояния будет Фа, энергия — е". В этих обозначениях уравнение Шредингера для лтома  [c.67]

Суперпозиция квантовых состояний является физическим принципом, но представление состояния как ре-зулы ата суперпозиции других состояний является чисто математической процедурой и всегда возможно независимо от физических условий. Однако насколько это целесообразно и какое именно представление целесообразно, зависит от конкретных физических условий.  [c.104]

Применим ту же процедуру для исследования устойчивости состояния покоя системы (нулевой стационарной амплитуды, т. е. Цо = По = Л,, = 0). Тогда 1 = —О /г — 1 . Если потребо-  [c.167]

В программах имитационного моделирования СМО преимущественно реализуется событийный метод организации вычислений. Сущность событийного метода заключается в отслеживании на модели последовательности событий в том же порядке, в каком они происходили бы в реальной системе. Вычисления выполняют только для тех моментов времени и тех частей (процедур) модели, к которым относятся соверщаемые события. /1 )угими словами, обращения на очередном такте моделируемого времени осуществляются только к моделям тех элементов (устройств, накопителей), на входах которых в этом такте произощли изменения. Поскольку изменения состояний в каждом такте обычно наблюдаются лишь у малой доли ОА, событийный метод может существенно ускорить моделирование по сравнению с пошаговым методом, в котором на каждом такте анализируются состояния всех элементов модели.  [c.196]


При составлении уравнений состояния типа (342) процедура определения постоянных Ьц пришшниалы О сохраняется.  [c.138]

Расчет на прочность по максимальным и предельным нагрузкам, предусматривающий последовательный анализ предельного состояния всех слоев, выполняется так же, как и ранее усложняется лишь процедура определения напряжений в главных осях каждого слоя. Однако метод построения предельной поверхности основан на предположении о равномерном распределении деформаций по толщине и не может быть использован в рассматриваемом случае. Исключение составляют комбинации плоского и из-гибного нагружений, которые сводятся к безмоментному напряженному состоянию материала. В таких условиях работают несущие слои трехслойных панелей и цилиндрические оболочки при специальном характере нагружения.  [c.93]

С целью достижения наименьшего размера зерен образцы сплава Zn-22 %А1 были также подвергнуты закалке с последующей деформацией кручением. Эта процедура привела к формированию двухфазной нанодуплексной структуры со средним размером зерен около 80нм (рис. 1.9) [362, 363]. Вместе с тем энергодисперсионный анализ показал изменение химического состава обеих фаз. Так, было обнаружено, что содержание Zn в А1 фазе достигало 10%, что примерно в 5 раз выше, чем в равновесном состоянии. Сверхпластическое поведение этих образцов наблюдалось при температуре 120°С и скорости деформации 10 с . Тем не менее, величина удлинения до разрушения была относительно невелика и составила 280%. Для сравнения этот же сплав со средним размером зерен 0,5 мкм, полученный РКУ-прессованием, при испытаниях в этих же температурно-скоростных режимах продемонстрировал удлинение свыше 600%.  [c.211]

Как и в большинстве теорий прочности композитов, в анализе, использующем критерий тина Хплла, в качестве основной технологической единицы слоистого материала принимается однонаправленный слой. Модули композита, его матрицы жесткости и податливости вычисляются по четырем независимым упругим константам материала слоя при помощи обычных процедур преобразования и интегрирования (см. разд. 4.3). Деформации композита, вызванные любой приложенной нагрузкой, определяются при помощи его упругих свойств. Затем рассчитываются деформации е,/ и напряжения ац каждого слоя, и при помощи критерия прочности Хилла оценивается напряженное состояние каждого слоя  [c.152]

Для определения тангенциальных модулей по диаграммам деформирования, полученным из экспериментов при одноосном нагружении, Петит [19] использует деформации слоя ei и б2, развивающиеся при двухосном нагружении Этот прием не является вполне строгим. Сандху в своем подходе пытается учесть эффект двухосного напряженного состояния путем определения после каждого шага нагружения эквивалентных деформаций. Эти скорректированные деформации используются для определения средних упругих констант слоя, после чего вычисляется новое значение [Ау и по нему уточненные приращения деформаций. Процедура повторяется до тех пор, пока разность между приращениями деформаций, определенными в двух соседних итерациях, не будет меньше желаемой точности приближения. Окончательно приращения напряжений слоя получаются из этих исправленных величин приращений деформаций и тангенциальных модулей (уравнение (4.3), записанное через приращения). Текущие значения напряжений, деформаций и энергии деформирования на (rt+l)-M шаге определяются суммированием соответствующих приращений и текущих значений после предыдущего шага нагружения. Повторение этой процедуры позволяет получить диаграмму деформирования композита до тех пор, пока величина накопленной энергии деформирования любого слоя не достигнет своего предельного значения.  [c.156]

Как обсуждалось выще, поведение конструкции из композита можно рассчитать при помощи упругих рещений, используя модель термореологически простой среды, если поле температур однородно. Однако подобная простая процедура не имеет теоретического обоснования для случая, когда уравнения состояния имеют вид (5.28). Поэтому для анализа термореологически сложных материалов может оказаться необходимым прямой численный подход. Есть основания полагать, что в этом случае можно применить щаговые методы, уже используемые в анализе термореологически простых материалов при нестационарных или неоднородных полях температуры.  [c.196]

Сформулированные выше основные закономерности малоциклового деформирования и разрушения необходимы в связи с разработкой методов оценки прочности элементов конструкций. Для обоснования расчетной процедуры и уточнения запасов прочности в инженерной практике проводятся мснытанвя моделей и натурных элементов. Основными задачами, которые решаются в таких испытаниях, являются сопоставление расчетного и экспериментального распределения деформаций и напряжений (особенно в зонах концентрации с учетом поциклового перераспределения), а также изучение условий достижения предельного состояния по разрушению (образованию трещины). При этом для оценки прочности в условиях циклического упругопластического деформирования необходимы данные о кинетике деформированного состояния конструкции, а также кривые малоцикловой усталости материала при однородном напряженном состоянии.  [c.135]

Процедура статистического моделирования процесса функциони рования ЭЭС с целью определения показателей надежности включает следующие основные составляющие формирование и введение массива исходных данных генерацию необходимых случайных величин моделирование процесса перехода системы из состояния в состояние идентификацию состояний в соответствии с выбранным критерием отказа (или определение для каждого состояния других интересующих характеристик, например ущерба или недоотпуска электроэнергии) формирование массива выходных данных обработку статистической информации и получение численных значений показателей надежности.  [c.278]


Смотреть страницы где упоминается термин Состояние, процедура : [c.443]    [c.157]    [c.415]    [c.147]    [c.83]    [c.127]    [c.429]    [c.276]    [c.249]    [c.85]    [c.43]    [c.161]   
Смотреть главы в:

1С Предприятие версия 7.7 Часть1  -> Состояние, процедура



ПОИСК



Процедура

Процедура определения напряженно-деформированного состояния

Процедуры определения налряженно-деформнрованного состояния многослойных анизотропных оболочек вращения сложной формы

Состояние Status, процедура



© 2025 Mash-xxl.info Реклама на сайте