Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Циклический наклеп

При испытании на разрыв образцов после циклического наклепа некоторые из них разрушились в стороне от минимального сечения В — В (см. рис. 2.9), что связано, но всей вероятности, со снижением S вдоль оси А — А в большей степени, чем увеличивается площадь поперечного сечения. В данном случае анализ максимальных напряжений в неразрушенном сечении В — В позволил дать лишь нижнюю оценку 5с = 5 (см. на  [c.82]

Рассмотрим результаты фрактографических исследований образцов, испытанных по программе Циклический наклеп и растяжение . Анализ поверхности разрушения показал, что для всех образцов с различным предварительным циклическим нагружением разрушение при растяжении происходило по меха-  [c.84]


Сопротивление термической усталости материала, поврежденного наклепом, которое при испытаниях с выдержками при максимальной температуре цикла определяется в значительной мере этими характеристиками, также существенно меньше, чем при испытаниях без выдержки на /max- Циклический наклеп уменьшает пластичность, которая во многом определяет сопротивление длительной термической усталости, В табл. 13 приведены данные, свидетельствующие о взаимосвязи релаксационных к термоусталостных характеристик материалов. Сплавы  [c.103]

Для определения кривых циклического упрочнения изучают циклический наклеп, для чего образец подвергают циклической деформации так, чтобы на каждом цикле АВр оставалась постоянной, и находят напряжения, необходимые для получения этой деформации в последующих циклах. Зависимость этих напряжений от суммарной пластической деформации определяет кривую циклического упрочнения, подобную статической диаграмме деформации. Диаграмма напряжение-деформация для циклически стабильного состояния дает важную информацию об изменении макро-механических свойств материала во время процесса усталости. Положение кривой циклического упрочнения по отношению к кривой монотонного статического упрочнения позволяет получить информацию упрочняется или разупрочняется металл при циклическом нагружении (рис. 1.6).  [c.11]

При циклических нагрузках макродеформация объема нагружаемого металла, как правило, отсутствует, т. е. деталь в целом деформируется упруго. Однако при этом происходит местная повторная пластическая деформация отдельных, наиболее неблагоприятно ориентированных по отношению к силовому полю кристаллов, сопровождающаяся циклическим наклепом.  [c.59]

В противоположность статическому циклический наклеп при достаточно большом числе циклов приводит к постепенному падению прочности. Однако характер искажений атомной решетки при пластическом деформировании в условиях, например, статического растяжения качественно такой же. как и искажений, возникающих в процессе усталости [I].  [c.59]

Циклический наклеп, в отличие от статического при достаточно большом числе циклов приводит к постепенному падению проч-  [c.44]

Цианистые ванны методы обезвреживания 640, 641 Цикл напряжений 45 Циклическая прочность 47 Циклический наклеп 44.  [c.1203]

Титановые сплавы немагнитны, очень чувствительны к концентрации напряжений. В циклически нагруженных конструкциях целесообразно подвергать детали упрочняющей обработке холодной пластической деформацией (наклепу) с целью создания остаточных напряжений сжатия в поверхностном слое.  [c.187]


Установлено, что предел выносливости образцов, нагружаемых циклическими растягивающими напряжениями, существенно увеличивается при предварительной деформации образца в результате происходящего при этом объемного наклепа материала (рис. 190). Особенно значителен эффект пластического деформирования при нагрузке того же знака, что и рабочая. ,  [c.313]

Циклически нагруженные соединения. Соединения, передающие пульсирующий крутящий момент или испытывающие знакопеременные радиальные нагрузки, подвержены усталостным повреждениям особого вида фрикционной коррозии, наклепу и свариванию.  [c.337]

Условия работы циклически нагруженных соединений резко ухудшаются, если в сочленении имеется зазор. Сочленяющиеся поверхности периодически раздвигаются и смыкаются нагрузка становится ударной. При неправильной конструкции сочленение быстро выходит из строя в результате перегрева, наклепа и разбивания рабочих поверхностей.  [c.356]

Упрочнение швов пластической деформацией в холодном состоянии (накатывание, дробеструйный наклеп, чеканка пневматическим инструментом с пучковыми чеканами) позволяет довести циклическую прочность шва до прочности основного. % еталла.  [c.180]

На практике работоспособность соединений, особенно при циклической нагрузке, определяется преимущественно напряжениями смятия, что объясняется различными условиями работы шлицев при смятии и изгибе. Напряжения смятия, сосредотачивающиеся на наиболее нагруженных участках шлицев, вызывают местный наклеп, появление неровностей, сопровождающееся дальнейшим возрастанием очаговых нагрузок и приводящее в конечном счете к свариванию соединения. При изгибе же перегруженные шлицы упруго деформируются, что способствует передаче нагрузки на остальные, менее нагруженные шлицы и упрочнению соединения.  [c.262]

В промышленности уже давно и весьма широко применяются методы поверхностного упрочнения деталей, работающих в условиях циклических напряжений (рессоры и полуоси автомашин, зубья шестерен, винтовые клапанные пружины и пр.). Эта специальная поверхностная обработка не преследует целей общего изменения прочностных показателей металла. Речь идет именно об усталостном упрочнении, часто в сочетании с требованиями износостойкости. К числу таких методов, применяемых в различных сочетаниях, относятся химико-термические (азотирование, цементация, цианирование), поверхностная закалка токами высокой частоты и наклеп поверхностного слоя обкаткой роликами или обдувкой дробью.  [c.96]

Заметим, однако, что деление материалов на циклически упрочняющиеся, стабильные и разупрочняющиеся носит несколько условный характер, так как поведение определенного материала при циклическом деформировании зависит от температуры, его исходного состояния (наклеп, термообработка) и других факторов. Например, наклеп — предварительное пластическое деформирование при комнатной температуре — ведет к циклическому разупрочнению. То же имеет место и при закалке. Так что в нестабильном состоянии материал циклически разупрочняется. В то же время в стабильном состоянии (отжиг) наблюдается циклическое упрочнение.  [c.686]

Усталостное изнашивание является следствием циклического воздействия на микровыступы трущихся поверхностей, о чем было сказано выше. Отделение частиц может также происходить в результате наклепа поверхностного слоя, который становится хрупким и разрушается (иногда его называют изнашиванием при хрупком разрушении).  [c.236]

Режим и технология точения также могут определенным образом влиять на усталостную прочность. Высокая скорость резания и большая подача заметно снижают предел выносливости вследствие повышения шероховатости поверхности и появления неблагоприятных поверхностных напряжений. Однако имеются режимы резания, которые создают поверхностный наклеп и сжимающие напряжения, повышающие предел выносливости титана. Замечено отрицательное влияние на усталостную прочность титановых сплавов охлаждения жидкостями (вода, эмульсия и пр.) при высоких скоростях резания точением. В этом случае происходит поверхностное наводороживание и даже появление гидридных пленок и слоев, способствующих возникновению растягивающих напряжений и хрупкости поверхности. Во всех случаях конечные операции механической обработки деталей из сплавов титана, подвергающихся систематическим циклическим нагрузкам, необходимо строго регламентировать, а еще лучше предусмотреть специальную поверхностную обработку, снимающую все неблагоприятные поверхностные явления и упрочняющую металл.  [c.181]


Очень часто конечной операцией изготовления полуфабрикатов или деталей из титановых сплавов является химическое травление (листы, ленты, трубы, проволока, штамповка и пр.) с целью удаления газонасыщенного слоя. Оно в значительной степени определяет уровень усталостной прочности. Наиболее часто применяемая операция обработки большинства листов, труб и других профилей — кислотное травление. В результате такой обработки циклическая прочность снижается на 20 —40 % [ 173]. Наибольшее влияние травления на усталость наблюдается у высокопрочных сплавов, наименьшее —у технически чистого титана. Заметное снижение усталостной прочности титана происходит при других видах химической обработки, например после электрохимической обработки (ЭХО). В настоящее время находит все более широкое применение ряд новых видов электрохимической и электрогидравлической обработки поверхности металлов. Влияние этих видов обработки (как финишной) на усталостную прочность титановых сплавов мало изучено. Как правило, после таких видов обработки на поверхности металла образуются тонкие наводороженные слои, что для титановых сплавов нежелательно. Электрогидравлическая обработка поверхности (электро-разрядная, электроимпульсная, электроискровая) —один из новых технологических видов очистки отливок, штамповок и других "черных" поверхностей заготовок. Эта поверхностная обработка сопровождается комплексом физико-химических и механических воздействий на металл [174]. Для титановых сплавов она благоприятна, по-видимому, вследствие сильного поверхностного наклепа и образования сжимающих напряжений у поверхности.  [c.182]

Ранее была отмечена особая чувствительность усталостной прочности титановых сплавов к характеру финишной поверхностной обработки.. Естественно, что многие исследования были направлены на разработку специальных методов поверхностного упрочнения титана, максимально повышающих его предел выносливости. Выявлен наиболее эффективный способ—применение различных видов ППД. Этот способ уже широко используют для многих металлов, а для титановых сплавов он оказался крайне необходимым и перспективным. По исследованиям в этом направлении в настоящее время постоянно публикуется большое число работ (главным образом в периодической литературе). Можно без преувеличения утверждать, что основные резервы повышения усталостной прочности титановых сплавов состоят именно в правильном выборе метода ППД и финишного сглаживания поверхности деталей, подвергающихся циклической нагрузке. Если для стали основная польза ППД заключается в создании сжимающих поверхностных напряжений, то для титановых сплавов, как уже показано, имеет не меньшее значение повышение прочности (за счет наклепа) и однородности механических свойств поверхностных слоев. Часто поверхностный наклеп титана необходим, чтобы снять неблагоприятный эффект предшествующей обработки, которую исключить из технологического процесса не всегда уда ется (например, шлифование или травление).  [c.196]

Оценивая эффект асимметрии при жестком нагружении, необходимо подчеркнуть, что в общем случае статическая составляющая циклических деформаций может снижать долговечность, причем с ростом вуп влияние средней деформации постепенно усиливается и становится значительным, когда достигается существенное исчерпание исходной пластичности материала в результате наклепа.  [c.13]

Следует подчеркнуть, что в связи с различным характером изменения сопротивления циклическому деформированию в зависимости от состояния (термообработка, наклеп) материал одной марки может относиться к различным группам классификации. Так, углеродистая сталь ЗОХГСА в отожженном состоянии является материалом, циклически изотропным, стабилизирующимся, а в нормализованном и закаленном — материалом, циклически изотропным, разупрочняющимся.  [c.74]

В эксплуатации наличие постоянной составляющей напряжений от внутреннего давления, а также различная степень предварительного сжатия или растяжения сильфонного компенсатора при установке в системе трубопроводов приводят к наклепу и асимметрии цикла напряжений и деформаций. Литературные данные [39, 122, 262], а также результаты исследований малоцикловой прочности конструкционного материала при наклепе свидетельствуют о том, что при жестком нагружении (постоянство максимальных циклических деформаций) наличие средней деформации — примерно половины предельной статической — практически не влияет на долговечность (Л > 100 циклов), и в первом приближении разрушение определяется только циклической составляющей нагружения.  [c.183]

Можно считать установленным, что пластические сдвиги, возникающие в металле под действием циклической нагрузки, приводят к наклепу и перераспределению напряжений как между зернами, так и внутри самих зерен. Наклеп для многих металлов сопровождается увеличением твердости. Пластическая деформация накапливается в результате скольжения и двойникования вдоль тех же кристаллографических плоскостей и по тем же направлениям, что и при действии статических нагрузок. И. А. Одинг дополнил эту теорию, обратив внимание на то, что циклические повторяющиеся напряжения вызывают в металле два одновременно протекающих явления упрочнение и разупрочнение Л. 31]. Упрочнение связывается с наклепом и старением, а разупрочнение — с появлением напряжений второго рода, искажений третьего рода, дроблением кристаллов на блоки.  [c.159]

Рассмотрим возможность прогнозирования зависимости S (x) по уравнению (2.22), исходя из следующей процедуры. Коэффициенты с с и Лд в (2.22) будем определять на основании.экспериментальных данных по статическому разрыву одноосных образцов в исходном состоянии (первая серия испытаний), а сравнение аналитической зависимости S (x) проведем с экспериментальными данными, полученными в третьей серии испытаний (циклический наклеп с последующим растяжением в области низких температур). На рис. 2.12 выполнено такое сравнение зависимости 5с(и), рассчитанной по уравнению (2.22) ( i = 2,27. 10- МПа-2 С2 = 4,03- 10 MHa Лд=1,87) с экспериментальными значениями 5с для стали 15Х2НМФА. Условия предварительного циклического деформирования и характеристики последующего хрупкого разрушения образцов приведены в табл. 2.1 и 2.2.  [c.81]


Р1зложенные здесь модельные представления о влиянии деформации на критическое напряжение хрупкого разрушения S подтверждаются результатами фрактографических и металлографических исследований. Возникновение деформационной субструктуры, обусловленное пластическим деформированием, приводит, как предполагалось, к появлению дополнительных барьеров для микротрещин скола. Тогда фрактуры поверхностей хрупкого разрушения образцов с различной степенью пластической деформации х, предшествующей разрыву, прежде всего должны различаться величиной фасеток скола с ростом х средний размер фасеток должен уменьшаться. Такая закономерность действительно прослеживается как для образцов, испытавших перед разрушением статическую деформацию растяжением, так и для образцов, которые испытывали по программе Циклический наклеп и растяжение .  [c.83]

Предельная прочность при циклических нагрузках достигается значительно раньше, чем при статических. Усталостное разрушение может возникнуть при напряжениях ниже предела текучести. Особенность миагоциклоБОй усталости — макродеформация объема металла, как правило, отсутствует. Деталь в целом деформируется упруго, но происходит местная повторная упруго-пластическая деформация отдельных наиболее неблагоприятно ориентированных по отношению к силовому полю кристаллов, сопровождающаяся циклическим наклепам. После достижения критической степени искажения решетки происходит разрыв межатомных связей.  [c.9]

У прочнение поверхностной пластической деформацией. Один из главных способов повышения циклической прочности - поверхностная пластическая деформация (ППД), т. е. наклеп поверхностного слоя на глубину х = = 0,2 0,8 мм с целью создания в нем остаточных напряжений сжатия.  [c.318]

Циклическую прочность торсионов можно значительно повысить путем упрочняющей обработки пластической дефор.мацией. Торсионы, работающие при циклической знакопеременной нагрузке, упрочняют дробеструйным наклепом. Торсионы, работающие при пульсирующей нагрузке, упрочняют заневоливанием (приложением статического момента того же направления, что и рабочий момент, при уровне напряжений, на 20 — 40% превышающем предел текучести материала). Дробеструйный наклеп и зане-воливание повышают долговечность торсионов примерно в 2 раза. Наилучшие результаты дает напряженный наклеп (наклеп в состоянии заневоливания), который дополнительно повышает долговечность на 20-30%.  [c.556]

Съемные устройства обязательны в еоединениях деталей с натягом, с применением герметизирующих составов, в соединениях с труднодоступным расположением деталей, а также в соединениях, работающих при циклических нагрузках, когда возможно. появление наклепа-и фрикционной коррозии.  [c.20]

Силы трения между торцом ступицы и упорным буртиком вала воспринимают часть крутящего момента, разгружая шпонку. При циклических нагрузках силы трения эффективно противодействуют угловым микросмешениям ступицы относительно вала, предупреждая выработку II разбивание боковых граней шпонки п наклеп на посадочных поверхностях.  [c.243]

В соединениях, подверженных циклическим нагрузкам, во избежание наклепа одно из колец каждой пары делают из кремнистых бронз БрКМцЗ —1 в кованом состоянии, а в ответственных соединениях — из бериллиевых бронз БрБ2. Кольца из бериллиевых бронз подвергают закалке при 800"С и отпуску при 250 — 300°С.  [c.305]

Процесс пластической деформации материала, реализующийся у кончика трещины с формированием нескольких зон, подтверждается результатами прямого наблюдения параметров дислокационной структуры у кончика трещины и под поверхностью излома [36-40]. В непосредственной близости к вершине трещины имеет место дискретное изменение плотности дислокаций на границе циклической зоны и зоны процесса. Измерения твердости на сталях под поверхностью излома после усталостного разрушения в области много-и малоцикловой з сталости [33, 35, 41, 42] показывают, что в результате пластической деформации материала в вершине распространяющейся усталостной трещины его наклеп по мере удаления от излома характеризуется двумя зонами. Выпол-  [c.138]

При возрастании нагрузки цикла поток энтропии возрастает немонотонно, и в момент достижения максимального напряжения цикла имеет место положение неустойчивого равновесия, когда первая производная от потока энтропии но времени меньпге нуля. Далее система стремится занять устойчивое положение вплоть до полного снятия нагрузки, что соответствует положительной производной от потока энтропии. Из приведенного рассмотрения становится понятным, например, почему в циклическом нагружении такую важную роль играют траектории восходящей и нисходящей ветвей нагрузки — форма цикла. При несимметричности (различие времен) восходящей и нисходящей ветвей нагрузки возникает различие в реализуемой иерархии дефектных структур в цикле нагружения. С возрастанием скорости восходящей ветви доминируют ротационные процессы, которые могут быть реализованы вплоть до Ю " -10 с [74]. Но не менее важно, что при снятии нагрузки происходят релаксационные процессы, полнота реализации которых также в значите.ть-ной степени зависит от времени, а значит, от формы нисходящей ветви нагрузки. В этой части полу-цикла нагружения также протекают ротации, которые могут вызывать интенсивный наклеп и создают предпосылку для nojrnoro исчерпания пластической деформации.  [c.147]

Темп приложения нагрузки в самой начальной стадии испытания влияет на поведение материала при дальнейшем циклическом деформировании. Более низкую долговечность для случая приложения полного напряжения в течение первого цикла связывают с увеличенной деформацией, не скомпенсированной процессом наклепа металла, и более ранним возникновением при этом зародышевых усталостных трещин в более мягких зернах или в более мягких зонах зерен, р При непрерывном испытании образцов из стали 45 среднее число циклов до излома при ст=35 кгс/мм составило Л/=145 тыс. При перерыве испытания на 5 мин после каждых 37 тыс. циклов и последующем плавном нагружении долговечность повысилась до =185 тыс., а при тамх же паузах, но последующем резком спуске груза снизилась до Л =117 тыс. циклов.  [c.25]

При решении задачи использовались в силу высокой частоты нагружения компенсаторов диаграммы циклического деформирования, полученные в условиях, когда эффект времени не успевал проявиться, т. е. диаграммы деформирования, близкие к мгновенным (изоциклические ди-аграммы деформирования). Кроме того, в связи с характерным для гофрированной оболочки компенсатора наклепом, возникающим в процессе пластического формообразования профиля, диаграммы деформирования были получены на материале, предварительно наклепанном растяжением до величины порядка 20%. На рис. 4.3.3 приведены диаграммы деформирования после указанного наклепа стали Х18Н10Т для ряда полу-циклов нагружения к = 1,5) при 600° С и временах нагружения в цикле порядка 30 с. Материал рис. 4.3.3 циклически стабилизировался после А = 5.  [c.205]


Смотреть страницы где упоминается термин Циклический наклеп : [c.76]    [c.77]    [c.54]    [c.8]    [c.293]    [c.296]    [c.543]    [c.772]    [c.580]    [c.406]    [c.510]   
Металловедение и термическая обработка (1956) -- [ c.44 ]



ПОИСК



Наклеп

Шаг циклический



© 2025 Mash-xxl.info Реклама на сайте