Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Теплота перехода

Эта формулировка интуитивно следует из нашего повседневного опыта, который показывает, что самопроизвольно теплота переходит только от тел с более высокой к телам с более низкой температурой, а не наоборот. Можно доказать, что формулировка Р. Клаузиуса эквивалентна формулировке В. Томсона.  [c.26]

При изотермическом сжатии 1 моля гелия, первоначально взятого при 500 °R (4,5 °С) и 1 атм, 2000 брит. тепл. ед. (504 ккал) теплоты переходит в окружающую среду. Определить конечное давление, если  [c.67]


Рис. 4.19. Три плато плавления азота, показывающие уменьшение интервала плавления (плато 3) при использовании начальных тепловых импульсов, в которых за 25 мин выделялось 2,25 % теплоты перехода [36]. Рис. 4.19. Три плато плавления азота, показывающие уменьшение интервала плавления (плато 3) при использовании начальных тепловых импульсов, в которых за 25 мин выделялось 2,25 % теплоты перехода [36].
В отличие от фазовых переходов первого рода, таких, как точки плавления или кипения, при фазовых переходах второго рода отсутствует скрытая теплота перехода. Поэтому такие переходы используются лишь как индикатор определенной температуры, а не способ ее поддержания. При затвердевании чистых металлов, которое обсуждается ниже, образец металла будет оставаться при температуре затвердевания, хотя его окружение охлаждается. В случае сверхпроводящих переходов отсутствие скрытой теплоты перехода не создает серьезных проблем. Это объясняется тем, что при низких температурах легко обеспечить необходимую точность терморегулирования, а теплоемкости и теплопроводности материалов таковы, что неоднородности температуры в криостате и инерционность объектов регулирования не создают никаких затруднений.  [c.168]

Плавление и затвердевание идеально чистых металлов происходят при постоянной температуре вследствие поглощ,ения или выделения теплоты перехода. Если используется достаточно большое количество металла (150 см — типичный объем плавящегося слитка), скрытой теплоты плавления достаточно, чтобы поддержать слиток и погруженный в него термометр при постоянной температуре в течение нескольких часов, пока происходит плавление или затвердевание металлов. Присутствие небольшого количества примесей в виде растворенного металла приводит к изменению температуры плавления или затвердевания металла, кроме того, эти процессы проходят в некотором температурном интервале. Применяемые для реализации реперных точек металлов галлий, индий, кадмий, свинец, олово, цинк, сурьма, алюминий, серебро и золото имеют достаточную чистоту для термометрии, которую, однако, непросто сохранить  [c.169]

Для металлов, имеющих сильную склонность к переохлаждению до спонтанного образования центров затвердевания, таких, как галлий, олово, сурьма, описанного выше охлаждения гнезда термометра недостаточно. Получающееся при этом падение температуры стенки гнезда термометра не приводит к возбуждению кристаллизации, поскольку эти металлы могут оставаться в переохлажденном жидком состоянии в случае сурьмы примерно на 40 К ниже равновесной температуры затвердевания. Интенсивное охлаждение наружной стенки тигля потоком аргона или азота [21] позволяет преодолеть эти особенности металлов. В этом случае тигель, но не сколь-нибудь значительный участок печи, должен быть быстро охлажден на несколько десятков градусов. Этого достаточно для возникновения центров кристаллизации по всей внутренней стенке тигля. Выделяющейся теплоты перехода достаточно для повышения температуры образца и тигля до температуры затвердевания в течение нескольких минут. Достижение плато затвердевания образца происходит в результате быстрого роста дендритов, что всегда наблюдается при затвердевании из переохлажденного состояния. Затем рост дендритов прекращается и оставшийся металл затвердевает с гладкой поверхностью раздела фаз, медленно продвигающейся к гнезду термометра. Альтернативный метод [55] возбуждения центров кристаллизации таких металлов, как олово и сурьма, состоит в удалении тигля с образцом из печи при достижении в ней температуры затвердевания и помещении его в другую печь, имеющую температуру примерно на 90 °С ниже. Как только из-за выделяющегося при начале затвердевания тепла прекратится охлаждение тигля с образцом, он переносится в исходную печь, имеющую температуру лишь на несколько градусов ниже температуры затвердевания. Успех подобной процедуры ярко демонстрирует выделение энергии при переходе от жидкого состояния к твердому.  [c.177]


А для теплоты перехода, приходящейся на одну частицу, получим  [c.123]

Такие фазовые превращения, которые характеризуются скачками объема, внутренней энергии, энтропии и ряда других параметров, а также конечной теплотой перехода, называют фазовыми переходами первого рода. Помимо них бывают еще фазовые переходы второго рода, при которых энтропия непрерывна и теплота перехода отсутствует, но испытывает скачок, например, производная дЗ/дТ. Мы не будем их касаться. Укажем только для примера, что таким образом парамагнитное вещество переходит в ферромагнитное состояние, а металл —из нормального в сверхпроводящее.  [c.123]

Это есть, конечно, не что иное, как теплота перехода AN частиц.  [c.128]

Если воспользоваться связью (6.4) д = Т 2 - 5 ) между скачком энтропии и теплотой перехода, эту с юрмулу можно представить в виде  [c.130]

Полученное соотношение называют уравнением Клапейрона — Клаузиуса. Из него можно, например, определить, как изменится давление насыщенных паров при изменении температуры или как изменится температура перехода при изменении давления, воспользовавшись экспериментальными значениями теплоты перехода и молекулярных объемов. Его часто используют и для определения  [c.130]

Различают фазовые переходы второго (II) и первого (I) рода. Фазовые переходы II рода характеризуются тем, что теплота перехода равна нулю, первые  [c.35]

Диссипация энергии есть процесс перехода части энергии упорядоченного процесса в энергию неупорядоченного процесса, а в конечном итоге - в теплоту. Переход диссипативной системы в упорядоченное состояние связан с неустойчивостью предшествующего, неупорядоченного, состояния, когда параметры системы превышают некоторые критические значения. Первоначально устойчивая диссипативная структура в процессе эволюции системы, достигая порога неустойчивости, начинает осциллировать, а возникающие в ней флуктуации приводят к самоорганизации новой, более устойчивой на данном иерархическом уровне диссипативной структуры.  [c.61]

Раскрывая полные производные по давлению, вводя скрытую теплоту перехода нз фазы I в фазу 2 q = T(s — si) и воспользовавшись формулой Клапейрона — Клаузиуса  [c.355]

Для всех температур выше абсолютного нуля наклон кривой критического поля отрицателен, так что энтропия нормальной фазы всегда больше энтропии сверхпроводящей фазы иными словами, сверхпроводящая фаза есть более упорядоченное состояние, чем нормальная. Если переход из сверхпроводящего состояния в нормальное происходит в магнитном поле, наблюдается поглощение тепла (вследствие наличия скрытой теплоты перехода). Таким об-  [c.635]

Тщательное сравнение измеренных значении теплоемкости, скрытой теплоты перехода и критических полей со значениями, вычисленными но уравнениям (13.4) и (13.5), дает убедительное доказательство обратимости магнитного перехода. Обратимость перехода была подтверждена многочисленными исследованиями [35, 198].  [c.636]

Такая неравноправность превращения теплоты в работу по сравнению с превращением работы в теплоту приводит к односторонности естественных процессов самопроизвольные процессы в замкнутой системе идут в направлении исчезновения потенциально возможной работы. Например, в практике не обнаружено случаев самопроизвольного перехода теплоты от холодного тела к горячему. При тепловом контакте двух тел различной температуры теплота переходит от горячего тела к холодному до тех пор, пока их температуры не станут равными. При наличии разности температур двух тел имеется возможность (см. 18) получить работу (потенциально возможная работа), самопроизвольный процесс при тепловом контакте таких тел идет в направлении исчезновения этой возможной работы.  [c.51]

Нетрудно также убедиться, что при тепловом контакте систем с температурами разных знаков теплота переходит от тел с отрицательной температурой к телу с положительной температурой, т. е. опять-таки от горячего тела к холодному.  [c.145]

Удельная теплота перехода проводника из сверхпроводящего в нормальное состояние X=T S — Ss) равна нулю в нулевом поле и положительна при Яс>0. Таким образом, при изотермическом переходе сверхпроводника в нормальное состояние происходит поглощение теплоты, а при соответствующем адиабатном переходе образец охлаждается. На этой основе был предложен метод получения низких температур адиабатным намагничиванием сверхпроводника.  [c.242]


Считая удельную теплоту перехода X постоянной величиной, показать, то давление насыщенного пара изменяется с изменением температуры по экспоненциальному закону.  [c.254]

Установить связь между удельными теплотами плавления [теплота перехода твердого тела 3 в жидкость 2], испарения жидкости А.12 и сублимации A.]j.  [c.254]

Теплота перехода вещества из первой фазы во вторую X=TAS=T(S — S ) или Х=Н"-Н поскольку фазовый переход является изотермно-изобарным процессом. Тогда  [c.365]

С изменением термодинамических сил, действующих на систему, изменяются различные характеристики фазового перехода первого рода (ФП I рода). Так,, при повыщении температуры и давления в системе жидкость — пар уменьшаются удельная теплота перехода и области метастабильных п неустойчивых состояний (см. рис. 31). Предельным случаем ФП I рода является критический переход. В критическом состоянии спинодаль и бино-даль сливаются в одну точку, удельные объемы фаз становятся одинаковыми, а фазы — тождественными. Критическое состояние определяется тем, что детерминант устойчивости и ИКУ равны нулю Dy = 0, (pP/<3V )t = 0, (<Э7 /55)р = 0.  [c.174]

В кипятильнике при pK = onst происходит выпаривание из раствора компонента за счет подводимой от горячего источника теплоты Ц. Пар направляется в конденсатор, где, отдавая теплоту охлаждающей среде (воде), конденсируется также при p = onst. При этом образуется жидкость с высокой концентрацией аммиака. В регулирующем вентиле РВ2 давление этого легкокипящего компонента снижается до давления в абсорбере (ратемпература кипения. С этими параметрами жидкость поступает в испаритель и, отбирая теплоту переходит в пар. Пар направляется в абсорбер, где поглощается раствором выделяющаяся при этом теплота отводится охлаждающей водой. Чтобы не было изменения концентрации растворов в кипятильнике и абсорбере а( а> к) вследствие выпаривания компонента в первом и поглощения во втором, часть обогащенного легкокипящим компонентом раствора из абсорбера перекачивается насосом в кипятильник, а из последнего часть обедненного раствора через дроссель FBI направляется в абсорбер.  [c.201]

Фазовые переходы I рода не обязательно связаны с изменением агрегатного состояния. Аналогичным образом —со скачками объема и энтропии и со скрытой теплотой перехода — происходят многие полиморфные превращения в твердых телах. При таких превращениях меняется кристаллическая стрзчстура и вместе с ней —практически все другие свойства тела. В этой связи различные кристаллические модификации вещества тоже называют его фазами.  [c.126]

В соотношении (1.23) т] является парамефом порядка. Длительное время фазовые переходы И рода характеризовали только с точки зрения отсутствия теплоты перехода. В настоящее время установлено, что определяющую роль в этих явлениях играют аномально растущие флуктуации вблизи Т , которыми при фазовых переходах I рода можно пренебречь. Это обусловило выделение ряда общих свойств критических точек, среди которых следует отметить масштабную инвариантность (скейлинг) и универсальность. Гипотеза масштабной инвариантности была сформулирована в 1960 г. независимо рядом ученых. Сущность гипотезы состоит в том, что вблизи критической точки единственным характерным масштабом в системе является радиус корреляции,  [c.37]

Клеменс [124] оценил упомянутый дополнительный тепловой поток следующим образом. Поток состоит из двух частей из добавки к Qn, возникающей вследствие условия Ф О, и теплоты, вызванной тем, что при переходе электронов из сверхпроводящего в нормальное состояние поглощается некоторая энергия, которая затем высвобождается при обратном процессе. В (25.6) последним эффектом мы пренебрегли, воспользовавшись в (25.5) выражением для справедливость такого пренебрежения вытекает из следующих рассуждений. Так как / = 0, / = / и так как в сверхпроводниках в стационарном состоянии электрическое поле 7 = 0 или по крайней мере мало ), то / будет порядка L,j (/sTr/QгдеЬ — коэффициент переноса (14.11), в котором учтено рассеяние статическими дефектами и вклад токов только в нормальных областях. Тепло, переносимое / порядка КТ, т. е. меньше на множитель(isTT/Q . Вторая добавка к имеет порядок так как скрытая теплота перехода из нормального в сверхпроводящее состояние на один электрон Эта добавка равна примерно Ь КТ IQ К Т рУТ, что значительно больше тенла, переносимого В свою очередь меньше на множитель порядка КТи-р.1%, поэтому циркуляционный механизм не дает заметного вклада в полную электронную теплопроводность ) отсюда вытекает, что в (25.5) должна фигурировать именно С .  [c.298]

С того времени было выполнено очень много работ по этому вопросу. Была завершена термодинамическая теория, связывающая теплоту перехода, изменення энтропии и теплоемкости с зависимостью критического магнитного поля от температуры. Для многих чистых металлов и сплавов были проведены измерения теилоемкости, результаты которых в целом ряде случаев прекрасно согласуются с результатами измерений критического магнитного ноля. Однако до сих пор вопрос о теплоемкости сверхироводип-ков нельзя считать решенным в основном потому, что пока пе создана достаточно удовлетворительная микроскопическая теория этого явления.  [c.361]

Термодинамическое рассмотрение. Допустим, что переход из нормального состояния в сверхпроводящее sTln) является термодинамически обратимым. Тогда, используя формулу Клайперона — Клузиуса, для скрытой теплоты перехода получаем следующее выражение  [c.362]

Из полученных выражепи мы видим, что многие термодинамические свойства обеих фаз определяются кривой зависимости критического магнитного поля от температуры, причем некоторые из этих свойств не зависят от особенностей кривой. Поскольку, например, при температуре перехода критическое поле равно нулю и наклон кривой постоянен, то из (13.4) мы видим, что разность энтропий обеих фаз равна нулю и скрытая теплота перехода отсутствует. Из (13.5) следует также, что при температуре перехода должно наблюдаться скачкообразное возрастание тенлоемости при переходе из нормальной в сверхпроводящую фазу. Как мы уже отмечали ранее, оба этих явления наблюдаются на опыте.  [c.635]


Если проводник находится в магнитном поле, то превращение его в сверхпроводящее состояние сопровождается тепловым эффектом и, следовательно, является фазовым переходом первого рода. В. Кеезом показал, что в этом случае переход определяется уравнением Клапейрона—Клаузиуса. При отсутствии магнитного поля теплота перехода равна нулю и превращение и в s является фазовым переходом второго рода.  [c.239]

Линию наименьшей устойчивости В. К. Семенченко называет квазиспинодалыо. В точках квазиспинодали флуктуации достигают при данных условиях наибольшего значения и система превращается в смесь флуктуационных зародышей обеих граничных (далеких от этого состояния) фаз — квазифазу или мезофазное состояние , не теряя своей макроскопической однородности. Поскольку минимум устойчивости является поворотной точкой в отношении изменения свойств фаз, он до некоторой степени аналогичен точке фазового перехода второго рода и условно его можно считать за точку закритического перехода. При этом, конечно, не нужно забывать, что закритический переход происходит на конечном интервале Т, р п других термодинамических сил. Поэтому в условной точке закритического перехода не происходит скачков энтропии, объема и других j , а только их быстрое изменение. Работа и удельная теплота перехода также равны по этой причине нулю. Сами коэффициенты устойчивости изменяются также непрерывно, а не скачком в этом состоит отличие закритических переходов от ФП II рода по Эренфесту.  [c.248]

Такая неравноправность превращения теплоты в работу пО сравнению с превращением работы в теплоту приводит к односторонности естественных процессов самопроизвольные процессы в замкнутой системе идут в направлении исчезновения потенциально возможной работы. Например, в практике не обнаружено случаев самопроизвольного перехода теплоты от холодного тела к горячему. При тепловом онтакте двух тел различной темпе-patypbi теплота переходит от горячего тела к холодному дО тех пор, пока их температуры не станут равными.  [c.41]


Смотреть страницы где упоминается термин Теплота перехода : [c.191]    [c.157]    [c.254]    [c.123]    [c.131]    [c.134]    [c.632]    [c.168]    [c.235]    [c.235]    [c.331]    [c.162]    [c.163]    [c.175]   
Термодинамика (1970) -- [ c.200 ]

Введение в термодинамику Статистическая физика (1983) -- [ c.119 ]



ПОИСК



Внутренняя теплота фазового перехода

Использование данных по теплоемкостям и теплотам фазовых переходов

Использование данных по теплотам фазовых переходов для пересчетов величин энтальпий образования, относящихся к различным агрегатным состояниям вещества

Компенсация теплового эффекта процесса теплотой фазовых переходов

Косвенные методы определения теплот фазовых переходов

Критическое поле (Нс) связь со скрытой теплотой перехода

Особенности превращения теплоты в работу и ее перехода от одного тела к другому

Самопроизвольный переход теплоты

Сверхпроводимость скрытая теплота перехода в магнитном

Сдельная теплота фазового перехода

Теплоемкости и теплоты фазовых переходов Общие сведения о теплоемкости и теплота х фазовых переходов

Теплота жидкостей фазового перехода скрытая

Теплота перехода скрытая

Фазовый переход второго рода теплота

Фазовый переход теплота

Фазовый переход теплота перехода



© 2025 Mash-xxl.info Реклама на сайте