Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Шкала температур термодинамическая

Шкала температур термодинамическая 61, 64 ---Цельсия 63, 64  [c.376]

Шкала температур термодинамическая 51—53  [c.310]

Магнитная шкала может совпадать с термодинамической лишь при-условии, что известны термодинамические температуры в точках градуировки магнитного термометра. Неточность этих сведений и является главной причиной отклонений магнитной шкалы от термодинамической. — Прим. ред.  [c.129]

В силу исторических причин, связанных с первоначальным способом определения температурных шкал, температура может быть выражена в виде разности численных значений данной температуры и температуры, соответствующей тепловому состоянию на 0,01 К ниже тройной точки воды. Термодинамическая температура Т, выраженная таким образом, называется температурой Цельсия, обозначается t и определяется как  [c.412]


Таким образом, второй закон термодинамики позволяет определить температуру как величину, не зависящую от природы рабочего тела, и указывает путь построения абсолютной термодинамической шкалы температур.  [c.133]

Температура характеризует степень нагретого тела. Ее измеряют или по термодинамической температурной шкале, или по международной практической температурной шкале. Единицей термодинамической температуры является кельвин (К), представляющий собой 1/273,16 часть термодинамической температуры тройной точки воды. Эта температура равна 273,16 К и является единственной воспроизводимой опытным путем постоянной точкой термодинамическом температурной шкалы (реперная точка).  [c.7]

Термодинамическая температура Г—температура, отсчитываемая по термодинамической шкале температур от абсолютного нуля.  [c.89]

Термодинамическая шкала температур. Используемая нами до сих пор эмпирическая температура t определялась по изменению (например, расширению) какого-либо параметра того или иного термометрического вещества (ртути, спирта и т. д.). Как мы уже отмечали, термометры с различными термометрическими телами, кроме основных точек О и 100 °С, будут показывать во всех других условиях разную температуру. Это особенно ясно указывает на произвольность и неудовлетворительность такого определения температуры, как объективной меры интенсивности теплового движения.  [c.61]

Второе начало термодинамики устраняет этот недостаток и позволяет установить термодинамическую шкалу, температура по которой не зависит от термометрического вещества и поэтому называется абсолютной. В самом деле, поскольку интегрирующий делитель ф( ) для элемента теплоты определяется только температурой, он может служить мерой температуры. Температура T=(p(t) и является термодинамической (абсолютной) температурой, поскольку, как мы покажем, числовое значение функции ф(/ от выбора эмпирической температуры не зависит, хотя вид этой функции зависит от выбора эмпирической температуры.  [c.61]

При сделанном нами выборе величины 100 для разности температур T — Tq, соответствующих основным точкам, т. е. при выборе градуса Цельсия в качестве единицы температуры, термодинамическая температура совпадает с газовой температурой, измеренной по шкале Кельвина Если пользоваться градусом Реомюра, т. е. положить  [c.64]

Термодинамическая шкала температур. Употребляемая нами до сих пор эмпирическая температура t определялась но измене-  [c.50]


Термодинамическая шкала температур  [c.72]

Изучение цикла Карно приводит к одному важному следствию, которое дает теоретические основания для выбора температурной шкалы, называемой термодинамической шкалой температур. В 2 главы I было дано определение эмпирической температуры. Из описания ясно, что эмпирическая шкала зависит от выбора термометрического тела и, следовательно, не является абсолютной. Выводы, полученные выше, привели нас к уравнению, которое для некоторого количества рабочего тела может быть написано в форме  [c.72]

Построение термодинамической шкалы температур можно представить следующим образом. Пусть температуры цикла A-B- -D (рис. 6.5) равны температуре кипения воды и температуре таяния льда Гц. Полагая, что в этом цикле в работу превращена теплота  [c.73]

Термодинамическая и международная практическая шкалы температур очень мало различаются. В случае практических измерений для сокращения индексы (межд. 1948) и (терм.) могут быть опущены.  [c.12]

Термодинамическая шкала температуры. Температуру Тд называют термодинамической температурой, она находится в следующей простой связи с количеством теплоты Q, полученной рабочим телом двигателя Карно при данной температуре  [c.53]

Рис. 2.16. К доказательству равномерности термодинамической шкалы температур Рис. 2.16. К доказательству равномерности <a href="/info/43869">термодинамической шкалы</a> температур
Следующим важным свойством термодинамической шкалы температур является одинаковость знака температуры всех тел это означает, что существует предельная температура, называемая абсолютным нулем. Из уравнения (2.44) видно, что наименьшая из возможных температур отвечает случаю, когда Q = 0 эта температура и есть абсолютный нуль. Следует иметь в виду, что двигателя Карно, у которого температура теплоприемника равнялась бы абсолютному нулю, в действительности быть не может, так как его существование противоречит второму началу термодинамики (поскольку в этом случае вся теплота превращалась бы в работу без всякой компенсации). Абсолютный нуль в термодинамической шкале температур является, таким образом, предельной и, как будет ясно из дальнейшего, недостижимой температурной точкой.  [c.54]

Термодинамическая температура Г — температура, отсчитываемая по термодинамической шкале температур  [c.9]

Температура — фундаментальная физическая величина, характеризующая состояние термодинамического равновесия макроскопической системы. Измерение температуры предполагает построение шкалы температур на основе воспроизведения ряда равновесных состояний — основных реперных (постоянных) точек, которым приписаны определенные значения температур, и создания интерполяционных приборов, реализующих шкалу между ними.  [c.172]

Абсолютный нуль термодинамической шкалы температур недостижим.  [c.54]

Следовательно, достижение абсолютного нуля термодинамической шкалы температур невозможно. Существование отрицательных абсолютных температур [2], которые по модулю больше любых значений положительных температур, также исключает достижение абсолютного нуля термодинамической шкалы температур.  [c.54]

Особо важную роль в термодинамике играет термодинамическая шкала температур. Нуль этой шкалы называют абсолютным нулем, а деления шкалы кельвинами (К). Связь между щкалой Кельвина (Г) и шкалой Цельсия t) устанавливается соотношением  [c.8]

Из уравнения (л) видно, что при переходе из одного состояния в другое в рамках одной пространственно-временной системы абсолютная температура Г не может менять знак на обратный. Она может быть всегда положительной или всегда отрицательной. Считая абсолютную температуру Т положительной, приходим к выводу, что обычные термодинамические системы не могут иметь отрицательных абсолютных температур. Вместе с тем уравнение (л) позволяет осуществить практическое построение абсолютной шкалы температур, например, путем сопоставления с идеальным термометром, наполненным идеальным газом, хотя идеальный термометр — это лишь абстракция.  [c.61]


Важным свойством термодинамической шкалы температур является одинаковость знака температуры всех тел. Это означает, что существует предельная температура, называемая абсолютным нолем. Из уравнения (2.6) видно, что наименьшая из возможных температур отвечает случаю, когда Q = 0 эта температура и есть абсолютный ноль.  [c.68]

Следует иметь в виду, что двигателя Карно, у которого температура теплоприемника равна абсолютному нулю, в действительности быть не может, так как его существование противоречит второму началу термодинамики. В этом случае вся теплота превратилась бы в работу без какой-либо компенсации. Абсолютный ноль в термодинамической шкале температур является, таким образом, предельной и, как будет ясно из дальнейшего, недостижимой температурной точкой.  [c.68]

Независимой от каких-либо физических свойств рабочего вещества является так называемая термодинамическая шкала температур, основанная на свойстве обратимого цикла Карно, к.п.д. которого согласно второму закону термодинамики определяется через температуры цикла  [c.21]

Вместе с тем известно, что термодинамическая шкала температур совпадает со шкалой идеального газового термометра, если положить принцип линейности в построении температурной шкалы и интервал от точки таяния льда до точки кипения воды при нормальном атмосферном давлении разделить на 100 равных частей, названных градусами Цельсия.  [c.22]

Так как поведение реальных газов мало отличается от поведения идеального газа в сравнительно широком диапазоне измерения температур, то, зная отклонения от законов идеального газа, можно термодинамическими методами вычислить поправки к показаниям газового термометра и воспроизвести термодинамическую шкалу температур. Однако в связи с техническими трудностями газовые термометры могут быть использованы для воспроизведения термодинамической шкалы температур лишь до температуры, не превышающей 1200°С.  [c.22]

В СССР в 1976 г. установлены практические температурные шкалы, обеспечивающие единство измерения температур различными методами в диапазоне от 0,01 до Ю К, при этом измеренные по этим шкалам температуры близки к термодинамическим.  [c.22]

Абсолютная температура рабочего тела является мерой интенсивности теплового движения молекул. При тепловом равновесии двух тел, когда теплообмен между ними отсутствует, температура их одинакова. Абсолютная температура всегда положительна, а нулевое значение ее соответствует состоянию полного покоя молекул. Шкала, в которой температура отсчитывается от этого состояния, называется термодинамической шкалой Кельвина. Измеренная по этой шкале температура обозначается 7 К. В технике же принята международная стоградусная шкала — шкала Цельсия, в которой отсчет ведется от состояния тающего льда при нормальном давлении (соответствующего абсолютной температуре 7=273,15 К). Измеренная по этой шкале температура обозначается °С. Величина градуса в обеих шкалах одинакова, поэтому пересчет с одной шкалы в другую производится по формуле 7=г +273,15.  [c.7]

Рекуррентная формула (3.71) позволяет в принципе указать простую процедуру получения термодинамической шкалы температур для некоторого теплового состояния ( назначается температура Т1 в виде положительного действительного числа, снабженного наименованием единицы измерения к 1 кг рабочего тела обратимого двигателя Карно в изотермическом процессе при температуре 1 подводится некоторое количество теплоты дг, рабочее  [c.84]

Таким образом, термодинамическая шкала температур совпадает с идеально-газовой шкалой с точностью до постоянного множителя (т. е. с точностью до единицы измерения). Это совпадение, впрочем, следовало уже из идентичности формул (3.13) и (3.71), ибо первая получена для идеального газа, а вторая принята в качестве основного условия при создании термодинамической шкалы.  [c.88]

Неясно, почему БАРН не приняла предложения Каллендара, и прошло всего 10 лет до появления нового предложения о принятии международной шкалы. В 1911 г. Государственный физико-технический институт (ФТИ, Германия) официально обратился в МБМВ, Национальную физическую лабораторию (НФЛ) Англин и Бюро эталонов в Вашингтоне (с 1934 г. Национальное бюро эталонов, НБЭ) с предложением принять в качестве Международной практической шкалы термодинамическую шкалу температуры, а ее практическую реализацию осуществлять в соответствии с предложениями Каллендара 1899 г, НФЛ и Бюро эталонов согласились с этим предложе-  [c.41]

За исключением области самых низких температур (скажем, ниже 1 К), первичные термометры остаются гораздо более трудоемкими при использовании и менее воспроизводимыми, чем лучшие вторичные термометры. Для большинства целей удобство и воспроизводимость показаний термометра важнее, чем точность по термодинамической шкале. Кроме того, существует очень много физических величин, для измерения которых требуется находить разности температур. К их числу относятся теплоемкость, теплопроводность и другие теплофизические величины. Если отклонения применяемой практической шкалы от термодинамической описываются медленно меняющейся плавной функцией температуры, то серьезных проблем не возникает. Если же, напротив, практическая шкала содержит небольшие, но заметные скачки отклонений от.термодинамической шкалы, то и измерения соответствующих физических величин в зависимости от температуры дадут неожиданные ложные скачки, которые отражают только несовершенство термометрии. Для исключения подобных затруднений необходимо, чтобы практическая шкала была гладкой функцией от термодинамической температуры. Это эквивалентно требованию непрерывности первой и второй производных температурной зависимости разности практической и термодинамической температурных шкал. Если для конк >етного вторичного термометра (такого, например, как платиновый термометр сопротивления) нетрудно рассчитать гладкую практическую шкалу, то получить гладкое соединение шкал для двух разных вторичных термометров гораздо сложнее. Основной источник трудностей заключается в том, что два различных участка шкалы часто основаны на разных физических закономерностях, отклонения которых от термодинамической шкалы не совпадают. Соединение шкалы по платиновому термометру сопротивления и по платинородие-вой термопаре в МТШ-27, так же как и в МПТШ-48 и МПТШ-68, служит хорошим примером типичных трудностей. В МПТШ-68 в этой точке имеется скачок первой производной от разности / — 68, достигающий 0,2%. Такие разрывы можно  [c.44]


В нынешней редакции МПТШ-68 платиновый термометр сопротивления, используемый при температурах выше 630 °С, должен градуироваться лишь путем сравнения со стандартной платино-платинородиевой термопарой. Поскольку даже с учетом эффектов решеточных вакансий и царапания проволоки воспроизводимость результатов у платинового термометра сопротивления гораздо лучше, чем у термопары, эту ситуацию нельзя признать удовлетворительной. Отсутствие общепринятого интерполяционного уравнения является одним из препятствий на пути к более широкому использованию высокотемпературных термометров сопротивления. До тех пор пока не будут проведены надежные сравнения МПТШ-68 с термодинамической шкалой температур в диапазоне от 630 до 1064 °С, от интерполяционного уравнения можно требовать лишь приведения в соответствие показаний платинового термометра сопротивления с квадратичной зависимостью э. д. с. термопары от температуры. Такое уравнение уже существует оно определяет градуировку платинового термометра сопротивления по шкале МПТШ-68 с точностью, достижимой для платино-платинородиевой термопары, а именно 0,2°С.  [c.219]

Применение отдельного вторичного термометра в области температур ниже 1° К невозможно, поскольку при низких температурах тепловое равновесие достигается с большим трудом (см. п. 2). Задача решается крайне просто, если использовать завпсящее от температуры свойство самой соли (в этом случае сама соль является вторичным термометром) такое свойство мы будем называть термометрическим параметром . Однако в этом случае возникает необходимость повторять калибровку параметра в соответствии термодинамической шкалой температур не только для каждой повой исследуемой соли, но такн е и для различных образцов одпон и той же соли, ибо получаемые на нпх результаты не всегда являются идентичными. Иногда даже данные, полученные па одном и том же образце соли в различных гелиевых экспериментах, несколько отличаются друг от друга.  [c.439]

XI Генеральная конференция по мерам и весам и ГОСТ 8550—61 решили определять термодинамическую шкалу температур [юсред-ством тройной точки воды, где в равновесном состоянии на) одится лед, вода и водяной пар, и приписать ей значение Т = 273,16 К. Во всех формулах термодинамики необходимо подставлят11 абсолютную температуру по шкале Кельвина,  [c.17]

Q, разобъем сеткой изотерм площадь цикла A-B- -D на 100 равных частей так, чтобы в каждом цикле (5ц = тогда изотермы пройдут через Р. Так же можно построить изотермы, лежащие ниже Наименьшая предельная температура = О, при которой термический к. п. д. цикла Карно равен единице, принимается за начальную точку термодинамической шкалы температур. Эта термодинамическая шкала совпадает с абсолютной шкалой температур, построенной по термометру с идеальным газом.  [c.73]

После Карно обоснованием второго начала термодинамики занимались Тсмсон и Клаузиус. Томсон сформулировал второе начало термодинамики в виде утверждения о невозможности осуществления теплового двигателя с одним единственным источником теплоты, т. е. такой машины, которая путем охлаждения моря или земли производила бы механическую работу в любом количестве, вплоть до исчерпания теплоты моря и суши и в конце концов всего материального мира. Ему же принадлежит открытие термодинамической шкалы температур. Клаузиус исходил из идей Карно и придал выводам последнего большую общность и строгость с учетом эквивалентности тепла и работы, т. е. окончательно освободил термодинамику от гипотезы о теплороде. Исторической заслугой Клаузиуса является формулировка второго начала термодинамики в виде следующего утверждения теплота сама собой не может переходить от тела холодного телу горячему. Позже он дал более расширенную формулировку второе начало гласит, что все совершающиеся в природе превращения в определенном направлении, которое принято в качестве положительного, могут происходить сами собой, т. е. без ксмпенсации, но в обратном, т. е. отрицательном, направлении они могут происходить только при условии, если одновременно происходят компенсирующие процессы. Далее Клаузиус вывел на основе этого принципа особую функцию состояния — энтропию. С помощью этого нового понятия Клаузиус придал второму началу термодинамики форму закона возрастания энтропии изолированной системы. Этот закон, по мнению Клаузиуса, должен был иметь силу для всей Вселенной, что оказалось неправомерной, а потому и неверной для всей Вселенной экстраполяцией второго начала термодинамики.  [c.154]

Выражение (3.70) можно использовать в качестве рабочей формулы для построения термодинамической шкалы температур, ибо множитель qi qi+l= ( —11 0,1+1) не ависит от свойств термометрического вещества (рабочего тела цикла Карно). Однако построенная таким образом шкала (если составлять ее из положительных чисел) находилась бы в противоречии с исторически слолсившимся понятием температуры теплота самопроизвольно переходит от тела с большей температурой к телу с меньшей температурой. Поэтому в качестве термодинамической температуры принимаем величину 7=1/Ф и вместо выражения (3.70) имеем следующую формулу  [c.84]


Смотреть страницы где упоминается термин Шкала температур термодинамическая : [c.333]    [c.770]    [c.70]    [c.91]    [c.331]    [c.172]    [c.172]    [c.60]   
Термодинамика и статистическая физика (1986) -- [ c.51 , c.53 ]

Справочное руководство по физике (0) -- [ c.125 , c.148 , c.536 ]



ПОИСК



Абсолютная термодинамическая температура шкала температур

Г-лава двадцать первая. Термодинамическая температура и международv ная шкала температуры

Единица термодинамической температуры — кельвин. Температурные шкалы

Положение точек кипения серы и ртути на термодинамической шкале температур (перевод Беликовой Т. П. и Боровика-Романова

Температура абсолютная по термодинамической шкале

Температура термодинамическая

Термодинамическая логарифмическая шкала температур

Термодинамическая стоградусная шкала температур

Термодинамическая шкала—см. Шкала температур

Термодинамическая шкала—см. Шкала температур

Термодинамические свойства Не Фомичев, Пе Б. Кантор, В. В. Кандыба Новые исследования температуры плавления корунда как вторичной реперной точки шкалы температур

Термодинамический к. п. д. цикла Карно. Понятие об абсолютной термодинамической шкале температур

Цикл Карно и термодинамическая температура (НО). Шкала Кельвина

Цикл Карно с произвольным рабочим теТемпературная шкала идеального газа как термодинамическая шкала температур

Шкала температур

Шкала температур абсолютная термодинамическая (Кельвина)

Шкала температур абсолютная термодинамическая (Кельвина) воспроизводимость

Шкала температур абсолютная термодинамическая (Кельвина) границы

Шкала температур абсолютная термодинамическая (Кельвина) исторический обзор

Шкала температур абсолютная термодинамическая (Кельвина) международная

Шкала температур абсолютная термодинамическая (Кельвина) нижний предел

Шкала температур абсолютная термодинамическая (Кельвина) области

Шкала температур абсолютная термодинамическая (Кельвина) платинового термометра сопротивления

Шкала температур абсолютная термодинамическая (Кельвина) положение

Шкала температур абсолютная термодинамическая (Кельвина) практическая

Шкала температур абсолютная термодинамическая (Кельвина) практическое осуществление

Шкала температур абсолютная термодинамическая (Кельвина) стандартная термометрическая

Шкала температур абсолютная термодинамическая (Кельвина) экстраполяция

Шкала температур абсолютная термодинамическая поддержание

Шкала температур абсолютная термодинамическая сравнение с другими шкалами

Шкала температур абсолютная термодинамическая усовершенствование

Шкала термодинамическая

Шкалы



© 2025 Mash-xxl.info Реклама на сайте