Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Лагранжа общие уравнения

При решении задач с помощью уравнений Лагранжа, общего уравнения динамики н метода кинетостатики силы разделяются на задаваемые и силы реакций связей.  [c.545]

Принцип Лагранжа общим уравнением, описывающим  [c.113]

Л- 12. УРАВНЕНИЯ ЛАГРАНЖА. ОБЩЕЕ УРАВНЕНИЕ МЕХАНИКИ  [c.170]

Принцип Даламбера — Лагранжа (общее уравнение динамики). Сумма работ всех потерянных ) сил на любом возможном перемещении системы подчиненной геометрическим неосвобождающим идеальным связям, равна нулю.  [c.326]


Лагранжа общие уравнения 242  [c.364]

I. Исторические замечания. Уравнения движения механических систем можно получать исходя из весьма различных положений, которые могут рассматриваться, как основные принципы механики. Эти принципы должны полностью характеризовать движение системы материальных точек и быть эквивалентными всей системе дифференциальных уравнений движения. Все законы механики системы материальных точек, на которую наложены идеальные связи, могут быть получены из принципа Даламбера — Лагранжа (общего уравнения динамики). Тем не менее представляет интерес преобразовать общее уравнение динамики так, чтобы получить новую форму, эквивалентную этому уравнению, но отличную от него по структуре. Новые формы либо допускают некоторые обобщения, выходящие за рамки чисто механических задач, либо дают возможность получить новые формы дифференциальных уравнений движения. С теоретической точки зрения новые формы в некоторых случаях позволяют обнаруживать некоторые общие свойства системы, которые не всегда очевидны в первоначальной формулировке принципа. Полученный новый принцип может быть принят за основной закон, и из него можно вывести все свойства движения, если только он правильно отображает природу.  [c.500]

ОБЩЕЕ УРАВНЕНИЕ ДИНАМИКИ (уравнение Даламбера — Лагранжа)  [c.391]

Уравнение (242), или (243), или (244) называется общим уравнением динамики (уравнением Даламбера — Лагранжа).  [c.392]

Если в данной задаче требовалось бы определить только ускорение 11) груза А, то значительно проще получить результат, применив общее уравнение динамики (см. ниже задачу 390) или уравнение Лагранжа второго рода.  [c.364]

Из общего уравнения динамики вытекают дифференциальные уравнения движения системы материальных точек, в которые не входят силы реакций идеальных связей. Возможно решение как прямых (определение сил по заданному движению), так и обратных задач (определение движения по заданным силам) динамики. При решении обратных задач приходится интегрировать составленную систему дифференциальных уравнений движения. Заметим, что использование общего уравнения динамики является формальным методом составления дифференциальных уравнений движения системы. Этот метод является менее удобным и менее эффективным по сравнению с применением уравнений Лагранжа второго рода (читатель сможет в этом убедиться, ознакомившись с содержанием следующего параграфа).  [c.414]


Общее уравнение динамики в обобщенных координатах. Уравнения Лагранжа второго рода. Общее уравнение динамики системы материальных точек  [c.471]

Итак, уравнения движения рассматриваемой системы были составлены двумя способами с помощью общего уравнения динамики в задаче 396 и уравнений Лагранжа в данной задаче.  [c.502]

Подобно предыдущей, данная задача была решена двумя способами с помощью общего уравнения динамики (см. задачу 397) и уравнений Лагранжа. Сопоставление обоих решений показывает, что применение уравнений Лагранжа является более эффективным и притом не требует использования формальных приемов, связанных с введением сил инерции.  [c.505]

Наиболее общим приемом составления дифференциальных уравнений движения системы материальных точек является применение уравнений Лагранжа либо общего уравнения динамики.  [c.539]

Если по условию задачи требуется определить силы реакций связей, то задачу следует решать в два этапа 1) с помощью уравнений Лагранжа или общего уравнения динамики определить ускорения точек системы, 2) применив принцип освобождаемости от связей, использовать дифференциальные уравнения движения соответствующей материальной точки, либо применить метод кинетостатики.  [c.539]

Если требуется определить только закон плоского движения твердого тела, то для составления дифференциальных уравнений движения, не содержащих сил реакций связей, следует при наличии идеальных связей, наложенных на твердое тело, применять уравнения Лагранжа или общее уравнение динамики.  [c.542]

Наиболее общим приемом составления дифференциальных уравнений движения системы материальных точек является применение уравнений Лагранжа или общего уравнения динамики. (Применение общего уравнения динамики является менее удобным и притом формальным методом в связи с использованием сил инерции.)  [c.544]

Уравнение (3.17) и представляет собой общее уравнение динамики, или уравнение Даламбера—Лагранжа. Если Xi, Yi, Zi — проекции силы Fi на оси декартовой системы координат, а fi, iji, и — проекции ускорения i-й точки на эти же оси, то уравнение (3.17) можно записать в виде  [c.52]

Воспользуемся методом неопределенных множителей Лагранжа. Умножим каждое уравнение системы для виртуальных перемещений на скалярный множитель, и все результаты вычтем из общего уравнения динамики, которое предполагаем выполненным для любого виртуального перемещения. Получим  [c.379]

Достаточность. Пусть общее уравнение теории удара выполнено. Тогда оно выделяет единственные значения приращений количеств движения точек системы. Это доказывается аналогично теореме 5.1.1 по методу неопределенных множителей Лагранжа.  [c.432]

ОБЩЕЕ УРАВНЕНИЕ ДИНАМИКИ (ПРИНЦИП ДАЛАМБЕРА —ЛАГРАНЖА)  [c.357]

Общее уравнение динамики, выражающее объединенный принцип Даламбера — Лагранжа, позволяет вывести уравнения движения механических систем в обобщенных координатах или так называемые уравнения Лагранжа второго рода.  [c.361]

Если система не имеет неголономных связей, то общее уравнение динамики, выражающее принцип Даламбера — Лагранжа, принимает следующий вид  [c.382]

Во втором томе учебника будет дан вывод уравнений Лагранжа второго рода, основанный на преобразовании общего уравнения динамики. Этим способом получения уравнений Лагранжа второго рода можно ограничиться, если преподавание ведется по сокращенной программе.  [c.13]

Дальше будет показано, что из общего уравнения динамики вытекают основные уравнения движения системы. Также и основные теоремы динамики можно получить из уравнения (11.7а). Поэтому Ж. Лагранж положил общее уравнение динамики в основу аналитической механики.  [c.120]


Общее уравнение динамики в обобщенных координатах Лагранжа  [c.123]

Динамика системы материальных точек сначала излагается для случая, когда движение стеснено произвольными дифференциальными связями. Из принципа Даламбера-Лагранжа (общее уравнение динамики) с использованием свойств структуры виртуальных перемещений [68] выводятся общие теоремы динамики об изменении кинетической энергии (живой силы), кинетического момента (момента количеств движения), количества движения. Изучается динамика системы переменного состава [1]. На основе принципа Гаусса наи-меньщего принуждения выводятся уравнения Аппеля в квазикоординатах. Получены также уравнения Воронца и, как их следствие, уравнения Чаплыгина. Установлено, что воздействие неголономных связей включает реакции, имеющие гироскопическую природу [44].  [c.12]

Принцип Даламбера — Лагранжа. Общее уравнение межаники  [c.218]

Таким образом, согласно общему уравнению динамики, в любой момент движения сиетемы с идеальными связями сумма элементарных работ всех активных сил н сил инерции точек системы равна нулю на любом возможном перемещении системы, допускаемом связями. Общее уравнение динамики (24) час го называю г объединенным принципом Да-ламбера Лагранжа. Его можно назвать лакже общим уравнением механики. Оно в случае равновесия системы при обращении в нуль всех сил инер щи точек системы переходит в нринцин возможных перемещений старики, только пока без доказательства его достаточности для равновесия системы.  [c.400]

Теорема 5.1.1. (Приыщш Даламбера-Лагранжа). Для того чтобы ускорения Ги материальных точек (ш,у,г ), I/ = удовлетворяли второму закону Ньютона в инерциальной системе отсчета под действием активных сил и идеальных двусторонних связей (см. 3.8), необходимо и достаточно выполнение общего уравнения динамики  [c.378]

Уравнение (34) часто называют общим уравнением сзатики, поскольку оно применимо ко всем материальным системам, независимо от их структуры. Оно принадлежит Лагранжу.  [c.333]

Уравнение (69) представляет собой первую форму общего уравнения динамики или уравнения, выражающего принцип Даламбер, — Лагранжа. Связи могут быть реономными, ввиду условности рарлювесия.  [c.358]

Для вывода уравнений движения механической системы с неголо-номными связями применим общее уравнение динамики, выражающее принцип Даламбера — Лагранжа (в данном случае этот принцип весьма удобен). Это уравнение имеет вид (считая связи идеальными)  [c.379]

Таким образом, согласно общему уравнению динамики, в любой момент двиэ сения системы с идеальными связями сумма элементарных работ всех активных сил и сил инерции точек системы равна нулю на любом возможном перемещении системы, допускаемом связями. Общее уравнение динамики (24) часто называют объединенным принципом Даламбера —Лагранжа. Его можно на-  [c.386]

Перейдем к изучению наиболее общих методов решения задач механики. Эти методы основываются на общем принципе — принципе возможных перемеицений, или принципе Лагранжа, так как Ж. Лагранж первый придал этому принципу законченную форму и положил его в основу статики. Обч единнв этот принцип с принципом Даламбера, Ж. Лагранж получил общее уравнение динамики, из которого вытекают основные дифференциальные уравнения движения материальной системы и основные теоремы динамики ).  [c.107]

Предположим, что исследуется движение изображающей точки на отрезке М1М2 основной траектории. Выберем траекторию сравнения так, чтобы концы ее отрезка, соответствующего отрезку М М2 основной траектории, совпадали с точками М и М2. Так как постоянные энергии А при движении изображающей точки по основной траектории и траектории сравнения одинаковы, можно утверждать, что промежуток времени, соответствующий переходу изображающей точки из положения М в положение М2 по основной траектории, не равен промежутку времени, необходимому для перехода этой же точки из положения М в положение М2 по траектории сравнения. Поэтому для доказательства принципа Эйлера — Лагранжа следует применять неизохронные (полные) вариации. Рассмотрим общее уравнение динамики  [c.201]


Смотреть страницы где упоминается термин Лагранжа общие уравнения : [c.359]    [c.166]    [c.168]    [c.178]    [c.182]    [c.327]    [c.539]   
Механика (2001) -- [ c.242 ]



ПОИСК



Вывод общего уравнения динамики (принцип Даламбера—Лагранжа)

Динамика 79 —• Общее уравнение (урав пеане Д’Аламбера—Лагранжа)

Интеграл Лагранжа — Коши уравнений безвихревого движеТеорема Бернулли. Некоторые общие свойства безвихревого движения идеальной несжимаемой жидкости в односвязной области

Интегральные принципы механики и общие уравнения Лагранжа

ОБЩАЯ ЗАДАЧА НЕБЕСНОЙ МЕХАНИКИ Уравнения Лагранжа и Гамильтона

Общее уравнение динамики (принцип Даламбера—Лагранжа)

Общее уравнение динамики (уравнение Даламбера—Лагранжа)

Общее уравнение динамики в обобщенных координатах Лагранжа

Общее уравнение динамики в обобщенных координатах. Уравнения Лагранжа второго рода

Общее уравнение динамики и центральное уравнение Лагранжа

Общее уравнение динамики. Уравнения Лагранжа второго рода

Общие соображения об интегрировании дифференциальных уравнений Лагранжа первого рода

Общие теоремы динамики системы, выводимые из уравнения Даламбера—Лагранжа

Общие теоремы о движении системы. Уравнения Лагранжа Неголономные системы Общие сведения

Общие уравнения

Общий случай движения точки. Уравнения Лагранжа

Примеры на применение общих уравнений Лагранжа

Принцип Даламбера—Лагранжа. Общее уравнение механики

УРАВНЕНИЯ МЕХАНИКИ ТЕОРЕМА ДАЛАМБЕРА И УРАВНЕНИЯ ЛАГРАНЖА Теорема Даламбера. Общее уравнение динамики

Уравнение Лагранжа общее решение

Уравнения Лагранжа

Уравнения Лагранжа II рода. Общее уравнение механики

Уравнения Лагранжа в независимых координатах и общее уравнение механики циклические координаты и симметрия силового поля и связей

Уравнения Лагранжа для кеплеровских оскулирующих элементов (общий случай)

Уравнения в переменных Лагранжа для случая малых наклоУравнения возмущенного движения в переменных Лагранжа (общий случай)

Уравнения возмущенного движения в переменных Лагранжа (общий случай)



© 2025 Mash-xxl.info Реклама на сайте