Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Концентрация напряжений циклических нагрузках

При циклической нагрузке концентрация напряжений выражена сильнее. Быстрое чередование нагрузок (а при знакопеременном нагружении — изменение их направления) подавляет развитие пластических деформаций, происходящих, как известно, с относительно небольшой скоростью.  [c.299]

В настоящее время, например, аппараты и нефтепроводы рассчитывают лишь на прочность от действия статических нагрузок, без учета временных факторов разрушения. Между тем они работают в режиме малоциклового нагружения, которое в десятки раз ускоряет процессы повреждаемости металла в зоне дефектов и конструктивных концентраторов напряжений. Кроме того, недостаточная степень подготовки нефти на промыслах способствует коррозионной активности рабочей среды. Циклические нагрузки в условиях коррозионной активности рабочей среды вызывают усиление усталостных процессов и особенно сильно в зонах концентрации напряжений. Это объясняется проявлением локального динамического механохимического эф-  [c.365]


Эффективный коэффициент концентрации к<т, учитывающий реальные особенности материала, меньше теоретического Оа. Снижение эффекта концентрации напряжений за счет реальных свойств материала при циклических нагрузках оценивается коэффициентом чувствительности ц  [c.350]

Сопротивление малоцикловому разрушению в зонах концентрации напряжения до возникновения трещины связано с упругопластическим перераспределением в них напряжений и деформаций. Один из результатов измерения перераспределения деформаций около поперечного отверстия в пластине из циклически разупрочняющей-ся стали представлен на рис. 5.9. Слева на этом рисунке показаны линии равной деформации трех уровней статической нагрузки, справа —циклической нагрузки (пульсирующий цикл) на стадии возникновения разрушения. Максимальные деформации на контуре отверстия обозначены бтах-  [c.90]

Усталостная поломка вала (рис. 20, б) и зуба шестерни (рис. 20, в) произошла из-за повышенной концентрации напряжений, связанной с ошибками при конструировании и изготовлении, или в результате возникновения повышенных циклических динамических нагрузок при эксплуатации изделия. На характер поломки зубьев влияет распределение нагрузки по длине, вид зацепления, источник концентрации напряжений и другие факторы [891.  [c.83]

Наиболее полно теоретические и прикладные проблемы, касающиеся усталости материалов рассмотрены в работах В. С. Ивановой, С. В. Серенсена, И. В. Кудрявцева, В. Т. Трощенко, Л. М. Школьника и др. Выполненные разработки привели к значительным достижениям в области прогнозирования надежности и долговечности изделий, эксплуатируемых при циклическом нагружении. Однако многие вопросы остаются нерешенными. Во-первых, не выявлена до конца физическая природа усталости материалов, во-вторых, не известно точное распределение нагрузки в узлах конструкций, в-третьих, отсутствуют достаточно точные способы расчета действительных коэффициентов концентрации напряжений, в-четвертых, не ясно влияние масштабного и других факторов, снижающих циклическую прочность материала [45].  [c.29]

В отличие от зоны растяжения циклическая зона определяется размахом коэффициента интенсивности напряжения [14, 43]. Размер циклической зоны оценивается в несколько раз меньшим, чем размер периферической зоны. Причина возникновения течения материала на нисходящей ветви нагрузки переменного цикла объясняется высокой концентрацией напряжений, которая возникает из-за высокой остроты надреза-трещины. Поэтому изменение направления деформации в противоположную сторону при переходе к снятию нагрузки сразу же сопровождается течением материала и формированием циклической зоны пластической деформации внутри уже созданной периферической зоны.  [c.139]


При усталостных испытаниях основными характеристиками являются предел выносливости, усталостная долговечность, чувствительность к концентрации напряжений, степень поврежденности циклическими нагрузками, скорость роста трещины, число циклов до появления трещины, длительность периода живучести, характеристики петли гистерезиса, изменение деформации образца в процессе циклического нагружения, изменение величины раскрытия трещины.  [c.7]

О том, насколько тот или иной металл чувствителен к концентрации напряжений в условиях циклической нагрузки, обычно судят по величине эффективного коэффициента концентрации напряжений.  [c.121]

ЦИКЛОВ С использованием соответственно пересчитанных механических характеристик материала. Предположим, что рассматриваемый слоистый композит содержит начальную поперечную сквозную трещину длиной 2а. Тогда первые несколько циклов нагружения при заданных отношениях напряжений и амплитуды максимального напряжения не приведут к существенным изменениям напряженного состояния у кончика трещины. Последующее длительное воздействие циклической нагрузки вызовет изменения в матрице, волокнах и поверхности раздела. Этот процесс описывается уравнениями (2.6), (2.7). Наступает момент, когда характеристики жесткости и прочности композита изменяются настолько, что появляется возможность распространения трещины в наиравлении нагружения, как показано на рис. 2.27. Вначале рост трещины устойчив — это было показано ранее. Следовательно, геометрия образовавшейся трещины такова, что материал еще может безопасно подвергаться дальнейшему нагружению. При этом продолжается уменьшение модулей упругости и прочности, что, вероятно, вызывает ускорение роста трещины. В конечном итоге после многократного повторения циклов нагружения свойства материала ухудшаются настолько, что при амплитудном значении напряжения трещина прорастает катастрофически и наступает усталостное разрушение. Однако следует иметь в виду, что в результате действия механизмов, тормозящих разрушение, как в случае слоистого композита со схемой армирования [0°/90°] , усталостное испытание может закончиться разрушением образца вследствие падения его прочностных свойств. В процессе усталостного нагружения могут, кроме указанного, проявиться и другие механизмы разрушения, такие, как разрушение волокон в окрестности кончика трещины из-за высокой концентрации напряжений. За этим может последовать распространение поперечной трещины, как показано на рис. 2.31, или межслойное разрушение (расслоение) вблизи надреза (рис. 2.16), или вдоль свободных кромок образца (рис. 2.17). В любом из этих случаев развитие процесса разрушения поддается предсказанию. Получив количественную оценку протяженности области разрушения (определяемой как а или а), можно установить соотношения da/dN или da/dN и сравнить их с экспериментальными данными.  [c.90]

Наличие на поверхности мелких дефектов, трещин, царапин, коррозионных раковин или язвочек резко снижает предел выносливости и приводит к концентрации напряжений возле этих дефектов, вследствие чего в данных местах возникает надрыв, который быстро развивается и приводит к разрушению. Для выявления таких скрытых дефектов полезно применять усталостные испытания переменными циклическими нагрузками.  [c.516]

В тонкостенной оболочке, ограниченной жесткими фланцами, зоной концентрации напряжений является место сопряжения оболочки с фланцами (рис. 1.3). Проанализируем долговечность элемента на основании деформационно-кинетического критерия прочности. Применение деформационных критериев для оценки несущей способности и прогнозирования ресурса элементов конструкции, работающих nj i периодической нагрузке, основано на анализе кинетики деформированного состояния и закономерностях изменения циклических деформаций и деформаций ползучести в зоне концентрации и в мембранной зоне.  [c.7]


В результате чередования нестационарных и стационарных тепловых режимов при эксплуатации в локальных зонах элементов конструкций появляются циклические упругопластические деформации и вследствие этого повреждения малоциклового характера. Местные циклические упругопластические деформации в зонах концентрации напряжений при преимущественном воздействии нестационарной тепловой нагрузки существенно зависят от удельных тепловых потоков, геометрии детали и локальных зон, а также скорости изменения теплового состояния рабочей среды.  [c.170]

Большинство деталей современных машин работает при переменных циклических нагрузках (валы, оси, зубчатые колеса, крепежные винты, пружины и др.). Предел выносливости при переменной нагрузке возрастает медленнее, чем предел прочности, вследствие изменения эффективного коэффициента концентрации, напряжений и коэффициента влияния абсолютных раз-  [c.223]

Обыкновенно обкатка галтелей дает значительное повышение усталостной прочности деталей, работающих под циклической нагрузкой. Способы упрочнения галтелей на Уралмашзаводе показаны в табл. 29. Обкаткой роликом упрочняются галтели с радиусом до 5—8 мм и свыше 100 мм. Обкатка галтелей радиусом 12—15 мм производится шариком, который разрешает повысить контактное давление в зоне пластической деформации поверхностного слоя. Галтели радиусом от 15 до 80 мм создают еще более значительную концентрацию напряжений, и их упрочнение производится способом динамического наклепа — ударниками.  [c.218]

Три знакопеременной нагрузке влияние сварочных напряжений на прочность конструкции зависит от ряда факторов. Они практически не влияют на циклическую прочность конструкции в том случае, если материал находится в вязком состоянии и если в изделии отсутствуют конструктивные и технологические концентраторы напряжений. Сварочные напряжения могут снижать циклическую прочность при наличии повышенной концентрации напряжений, особенно в конструкциях из материала с пониженными пластическими свойствами. В то же время усталостная прочность может быть повышена созданием в конструкциях при помощи различных технологических процессов благоприятных остаточных напряжений. При анализе условий работы конструкции со сварочными напряжениями необходимо также учитывать, что в наиболее распространенных сварных соединениях из малоуглеродистой и низколегированных перлитных сталей участки шва и прилегающей к нему зоны термического влияния, где действуют напряжения растяжения., являются более прочными.  [c.60]

Таким образом, в материале одновременно с циклическим повреждением накапливается статическое, при этом для первого важное значение имеет концентрация напряжений в зонах отверстий, галтелей, уступов. Характер разрушения диска зависит от того, какой вид нагрузки является более повреждающим для материала диска, обладающего вполне определенным резервом  [c.78]

Пример напряженного и деформированного состояния в диске турбины показан на рис. 4.7 [4, 14]. Как упоминалось выше, температурные напряжения на ободе в период запуска и стационарной работы сжимающие суммарные окружные напряжения в этой зоне поэтому оказываются незначительными. Основную нагрузку на обод создают усилия от рабочих лопаток. Как показывает эпюра рис. 4.7, я, наиболее напряженные зоны в диске — у отверстия в ступице и в полотне, где сказывается влияние концентрации напряжений. На рис. 4.7, б показано распределение пластических деформаций по радиусу как видно, наибольшие деформации развиваются на контуре отверстия в ступице. Зоны перехода в полотне также имеют повышенную деформацию. Кинетика напряженного состояния в течение первых семи циклов, установленная авторами [4, 14], показана на рис. 4.7, в. Как видно из этого рисунка, размах деформаций и их величина в экстремальных точках цикла, а также коэффициент асимметрии цикла деформирования существенно изменяются уже в первых циклах деформирования. Очевидно, что для расчета циклической долговечности следует использовать размах деформаций в стабилизированном цикле, если стабилизация вообще происходит. В ином случае необходимо использовать представления о закономерностях суммирования повреждений от нестационарных нагрузок, например, так, как это будет показано ниже на примере расчета диска малоразмерного газотурбинного двигателя.  [c.86]

К циклически нагруженным сварным конструкциям относятся в первую очередь кожухи и компенсаторы воздухонагревателей, доменных печей, резервуары для хранения жидкостей и газов, подкрановые балки, пролетные строения под подвижные нагрузки, трубопроводы больших диаметров, газгольдеры и др. Накопление усталостных повреждений в таких конструкциях происходит, как и в рассмотренных выше (см. гл. 2, 3, 7), в сварных соединениях, являющихся источниками концентрации напряжений  [c.169]

Резьба на валах создает значительную концентрацию напряжений, приводящую к резкому снижению предела выносливости деталей, работающих при циклических нагрузках. Резьбы на  [c.171]

Анализ этой задачи показывает, что она достаточно сложна, даже с учетом того, что нагружение одноосно, и даже в том случае, если мы не будем учитывать концентрацию напряжений или деформаций. При ее решении надо исследовать спектр нагружения, подсчитать число циклов, учесть отличную от нуля среднюю деформацию цикла и оценить накопление повреждений при малоцикловой усталости. Для получения оценки подходящего размера тяги при анализе типового 5-секундного блока нагружения можно применить метод стока. Напряжение и деформация связаны с нагрузкой через площадь сечения, величина которой пока неизвестна. Поэтому при максимальной и минимальной нагрузках в 5-секундном блоке максимальное и минимальное напряжения могут быть определены лишь при задании некоторого значения площади. По этим пикам напряжений с помощью кривой зависимости напряжений от деформаций при циклическом деформировании стали SAE 4340, приведенной на рис. 8.17, могут быть определены максимумы и минимумы деформаций. Для определения теоретического значения долговечности при каждом значении амплитуды в 5-секундном блоке нагружения может быть использовано соотношение (11.5).  [c.393]


Оценка влияния абсолютных размеров на сварные соединения при циклических нагрузках усложняется вследствие гетерогенности сварного соединения (как по механическим свойствам, так и по структуре), наличия сварочных остаточных напряжений и концентрации напряжений, вызываемой геометрической формой шва и технологическими дефектами. Указанные факторы сильно затрудняют моделирование сварных деталей и элементов сооружений.  [c.38]

При повторном циклическом нагружении в неблагоприятно расположенных зернах материала происходит накопление микротрещин, которые растут и сливаются в макротрещину. Макротрещина является очагом концентрации напряжений у ее краев, она начинает расти при повторном приложении нагрузки.  [c.294]

Эффективные коэффициенты концентрации напряжений имеют меньшие значения, чем теоретические коэффициенты концентрации а , определяемые в предположении упругого поведения материала. Снижение эффекта концентрации напряжений за счет реальных свойств материалов при циклических нагрузках учитывается коэффициентом чувствительности  [c.305]

Из перечисленных выше способов наиболее эффективно азотирование, которое практически полностью устраняет влияние концентраторов напряжений. Для азотированных деталей коэффициент д чувствительности к концентрации напряжений близок к нулю (т. е. эффективный коэффициент концентрации напряжений к йй 1). Азотирование почти не вызывает изменения формы и размеров деталей. Это позволяет во многих случаях устранить заключительное шлифование и бв,кгс1ммг сопутствующие ему дефекты, снижающие прочность. Кроме того, азотированный слой обладает повышенной коррозие- и термостойкостью. Твердость и упрочняющий эффект в противоположность обычной термообработке сохраняются до высоких температур (500—60б°С). Сочетание этих качеств делает азотирование ценным способом обработки деталей, работающих при повышенных температурах и подвергающихся высоким циклическим нагрузкам и  [c.317]

Снижение прочности невелико в изделиях из малоуглеродистых сталей (пластичность которых предотвращает появление внутреипих напря жений) и не имеет большого значения в конструкциях, работающих при статической нагрузке и умеренных напряжениях, но становится ощутимым в циклически нагруженных конструкциях, особенно выполненных из высокопрочных сталей, чувствительных к концентрации напряжений.  [c.160]

Влияние отклонений диаметров резьбы. Циклическая долговечность резьбовых соединений зависит от концентрации напряжении, возникающих во впадинах резьбы болтов, и характера распределения нагрузки между витками (при равномерном распределении циклическая долговечность выше). При периодическом нагружении резьбовые соединения разрушаются по первой или второй нагруженным впадинам резьбы болта. Разрушению предшествует появление усталостной трещины. В возникновении усталостной треи ,ины большую роль играют касательные напряжения, зависящие от зазора по виутреинему диаметру резьбы. При достаточно большом зазоре (рис. 12.8, а) максимальные касательные напряжения определяют по формуле  [c.290]

Для исследования напряженного состояния на поверхности раздела были разработаны аналитические методы. К ним относятся методы механики материалов, классической теории упругости и метод конечных элементов. Метод конечных элементов является наиболее универсальным и охватывает разнообразные граничные условия. Предполагаемая величина концентрации напряжений определяется условиями на поверхности раздела. Теоретические данные показывают, что концентрация касательных напряжений на концах волокон зависит от объемной доли волокна и геометрии его конца. Из этих данных также следует, что радиальное напряжение на поверхности раздела изменяется по окружности волокна и может быть растягивающим или сжимающим в зависимости от характера термических напряжений, а также от вида и направления приложенной механической нагрузки. Следовательно, в обеспечении требуемой адгезионной прочности, соответствующей конкретным конструкциям, существует определенная степень свободы. Наличие пор и влаги на поверхности раздела, так же как и повышение температуры, ослабляют адгезионную прочность, в результате чего снижаются жесткость и прочность композитов. Циклическое нагружение почти не сказывается на онижении адгезионной прочности. Показатель расслоения является критерием увеличения локальных сдвиговых деформаций в матрице и модуля сдвига композита. Этот параметр может быть использован при выборе компонентов материалов с заданной адгезионной прочностью на поверхности раздела, И наконец, следует отметить, что состояние данной области материаловедения  [c.83]

Усталость металла — один из видов физического износа. Это процесс постепенного изменения работоспособности деталей под воздействием переменных по величине и направлению нагрузок. Усталость проявляется в виде трещин, называемых усталостными, которые возникают преимущественно в деталях, испытывающих при работе многократные знакопеременные циклические нагрузки. Чаще всего они возникают в местах концентрации напряжений — расположения технологических дефектов типа несплошностей, галтелях, у отверстий, в местах резкого перехода, глубоких рисок и т. д. Возникновению усталостных трещин способствуют тдкже структурная неоднородность металла и местные повреждения в виде забоин, рисок, вмятин, царапин, появляющихся при неправильном техническом обслуживании оборудования.  [c.9]

II. Методы упрочняющей обработки поверхностей (см. рис. 7.13) в основном предназначаются для улучшения физико-механических свойств поверхностного слоя повышается твердость поверхностного слоя, в нем возникают деформационное упрочнение и остаточные напряжения сжатия или растяжения. При упрочняюш,ей обработке участков концентрации напряжений (галтелей и др.) влияние этих напряжений на прочность детали уменьшается. Влияние деформационного упрочнения и сжимающих остаточных напряжений благоприятно для повышения предела выносливости, что увеличивает долговечность деталей, особенно работающих при циклических нагрузках.  [c.172]

МИ колебаниями от главных циркуляционных насосов, гидродинамическими усилиями от изменения скоростей и направлений потоков теплоносителя в первом контуре, тепловыми пульсациями от недостаточного перемешивания потоков теплоносителя, вибрациями и колебаниями от сейсмических нагрузок. Сложный спектр высокоскоростных и вибрационных механических и тепловых нагрузок имеет место при различных аварийных режимах, связанных с возможным разрывом главных трубопроводов первого контура и динамическим смещением опор корпуса реактора при мощных землетрясениях и разрывах. Характер и анализ перечисленных выше статических и циклических нагрузок и связанных с ними напряжений приведены в нормах расчета на прочность [1,2]. Перечисленные выше нагрузки создают в корпусах и других злементах первого контура водо-водяных реакторов соответствующие номинальные нагфяжения. Учитывая сложность конструктивных форм этих элементов, неравномерное распределение температур по толщине стенок каждого элемента и между отдельными элементами, а также различие в физико-механических свойствах (коэффициенты линейного расширения, теплопроводность), суммарные местные напряжения могут значительно (в 2—3 раза и более) превосходить номинальные. По данным [1, 2, 6, 23, 29—37], коэффициенты концентрации напряжений а от механических нагрузок (равные отношению местных напряжений в различных зонах корпуса реактора к номинальным напряжениям в гладкой цилиндрической или сферической части) составляют величины порядка 1,5—5. Для некоторых из зон корпуса эти коэффициенты приведены в табл. 1.3.  [c.19]


Распределение упругопластических деформаций в области концентрации напряжений в образцах по рис. 7.7 измеряли специализированными цепочками фольговых двухмиллиметровых тензо-резисторов. Эпюры интенсивности деформаций е и размахов интенсивности Ае деформаций для различных уровней относительных номинальных напряжений а /ат приведены на рис. 7.9. Кривые построены по результатам измерений, полученных при испытании 2—3 однотипных образцов пунктиром показан размах Ае деформаций для стабилизировавшегося состояния. Характер эпюр е и Ае свидетельствует о значительной концентрации упругопластических деформаций вблизи шва. Локализация деформаций в рассматриваемых сечениях увеличивается с ростом нагрузки и сохраняется при циклическом нагружении.  [c.145]

Расчет строительных конструкций осуществляется в соответствии со строительными нормами и правилами [1]. Получаемый при этом уровень номинальной нагруженности сварных элементов и уровень концентрации напряжений свидетельствуют о возникновении в зонах концентрации локальных пластических деформаций, которые при повторном характере внешней нагрузки приводят к образованию трещины малоцикловой усталости. Так, при обследовании воздухонагревателей доменных печей появление трещин в кожухе было зафиксировано после 2—3 лет эксплуатации, что соответствовало 5 — 6 тыс. циклов. В подкрановых балках тяжелого режима работы повреждения в виде поверхностных трещин вдоль угловых швов приварки верхнего пояса к стенке наблюдались при числах циклов до 2 х 10 , или после 4 лет эксплуатации, в газгольдерах аэродинамических станций — после 4 X 10 циклов нагружения. Опасность появления трещин малоцикловой усталости в сварных конструкциях связана с тем, что трещина данной длины может при определенном соотношении уровня 4нагрузки, климатической температуры эксплуатации, скорости нагружения и других факторов оказаться критической, что приводит к катастрофическому хрупкому разрушению. Раз-рушение может наступить в разный период эксплуатации в зависимости от наступления критического сочетания инициирующих факторов. В этом заключается определенное отличие в разрушении циклически нагруженных конструкций по сравнению со статически нагруженными, основная масса аварий которых приходится на период эксплуатации с первыми похолоданиями при дальнейшей эксплуатации таких конструкций число хрупких разрушений резко сокращается (рис. 9.1). Для циклически нагруженных конструкций в первую зиму и во время испытаний разрушается только 34% конструкций от общего числа зарегистрированных разрушений. При последующей эксплуатации в течение примерно трех лет разрушения отсутствуют, и затем число разрушений начинает увеличиваться с 4 до 10% в год. Такой характер распределения разрушений конструкций под воздействием повторных нагрузок связан с необходимым периодом подрастания дефектов до критических размеров, и поэтому в течение определенного периода разрушения не наблюдаются. При дальнейшей эксплуатации идет накопление повреждений и развитие трещин усталости до образования полного разрушения.  [c.170]

При выбранных уровнях нагрузки циклическое термическое деформирование осуществляется в основном за счет сдвиговых процессов, при которых происходит упрочнение тела зерна, что наиболее характерно для циклически упрочняющейся аустенит-ной стали на начальном этапе ее термоциклирования (см. рис. 31). Одновременно с внутризеренными сдвигами в металле увеличивается плотность дислокаций у границзерена.Это приводит к возникновению концентраций напряжений, ускорению направленных диффузионных процессов и образованию микротрещин на границах зерен.  [c.86]

Конструктивные и технологические способы повышения прочности резьбовых деталей. При действии на соединение переменных нагрузок разрушение, как правило, происходит на резьбовом участке винта. Поэтому любые приемы, повышающие выносливость резьбового участка, должны рассматриваться как повышающие работоспособность соединения в целом. Основной причиной пониженной выносливости является высокая концентрация напряжений во впадинах витков резьбы, особенно в зоне первых рабочих витков (вблизи опорной поверхности гайки). Поэтому снижение местной нагрузки в зоне наибольшей концентрации позволяет повысить до 60 % циклическую прочность резьбовых соединений. На рис. 2.26 в качестве примеров приведены варианты выполнения гаек и винта в резьбовой зоне с улучшенным распределением нагрузки по виткам резьбы (Р — коэффициент повышения предела выносливости по сравнению с обычным исполнением). Некоторое повышение предела выносливоЬти (до 20 %) можно получить путем выполнения отверстия под резьбу в гайке со стороны опорной поверхности на конус (рис. 2.27). В этом случае нагрузка Fj на виток винта со стороны опорной поверхности прикладывается на большем плече а  [c.63]

На рис. 1.18, б показано изменение температур 1, 2, 3) в характерных точках диска при центробежной нагрузке (4), а также отражен циклический характер действия напряжений в галтели лопаточного паза для первого и двенадцатого циклов термомеханического нагружения. Эпюра распределения напряжений в галтели лопаточного паза диска для первого иолуцикла нагружения (рис. 1.18, в) характеризует высокую нагруженность опасной зоны турбинного диска при термоциклической нагрузке. Характер режима термомеханического нагружения диска такой же, как у модели диска (см. рис. 1.14) и элементов теплоэнергетического оборудов,ания (см. рис. 1.12). Этот пример еще раз показывает что характер протекания процесса упругопластического деформирования в детали определяется в значительной мере тепловым состоянием, режимом изменения температурного поля и концентрацией напряжений.  [c.34]

Малоцикловое нагружение характерно также и для судовых конструкций. Систематизация и обобщение амплитудных и фазовочастотных характеристик различных волновых нагрузок показали, что при нормальных ква-зистационарных процессах волнения максимальные нагрузки на корпус судна возникают при усредненной интенсивности волнения при более интенсивном волнении за счет снижения скорости движения нагрузки уменьшаются. При максимальных нагрузках от волн в зонах концентрации напряжений (узлы пересечения продольных и поперечных связей, места примыкания элементов боковой обшивки к днищу, отверстия под люки и т.д.) возникают циклические упрутопластические деформации, вызывающие образование трещин при числах циклов N в пределах 10 -10 Для крупных рефрижераторов эти нагрузки на1 сладываются на медленно протекающие тепловые процессы, вызывая существенное изменение асимметрии цикла напряжений,  [c.72]

В течение длительного времени применение высокопрочных сталей для сварных сосудов давления ограничивалось в связи с технологическими трудностями, опасностями возникновения сварочных трещин, повышенной склонностью этих сталей к хрупким разрушениям и большой чувствительностью к концентрации напряжений. Последнее обстоятельство является особенно небла-гоприятным при циклических нагрузках сосудов,  [c.205]

Оценка несущей способности элементов конструкций при малоцикловом нагружении основана на анализе напряженного и деформированного состояния в зонах концентрации напряжений (деформаций) с использованием кинетики циклических деформационных свойств материалов по числу циклов нагружения и соот-иетствующих критериев разрушения. Изменение деформационных характеристик зависит как от условий нагружения, так и от структурного состояния материала и может характеризоваться либо увеличением (разупрочняющиеся материалы), либо уменьшением (упрочняющиеся материалы), либо неизменностью (циклически стабилизирующиеся материалы) ширины петли гистерезиса с ростом числа циклов нагружения с заданной амплитудой нагрузки (напряжение) в цикле.  [c.6]

Уравнение (4.81) применяется для - оиределення амплитуды деформации при высокотемпературной малоцикловой усталости, оно не предназначено для расчета концентрации деформаций относительно направленной деформации. Однако можно считать, что при циклической дефор.мации закономерности концентрации напряжений и деформаций ползучести и упруго-пластической деформации по существу не отличаются от соответствующих закономерностей при направленной деформации. Как бы то ни было, рационально определять деформацию с помощью уравнения (4.81) по пересечению кривой циклическое напряжение—деформация с гиперболой е = (5 /о) /С в для случая упруго-пластической деформации. Необходимо обратить внчмание, что при определении номинальной деформации ползучести с использованием изохронных кривых напряжение—деформация, полученных исходя из кривых ползучести при постоянной нагрузке (см. например, рис. 4.7) она часто отличается от деформации, полученной при циклическом напряжении.  [c.119]


В то же время амали.э разрушений деталей машин, эксплуатирующихся при циклических нагрузках, показывает, что в большинстве случаев инициатором таких разрушений являются технологические (непровары, неметаллические включения, волосовины, закалочные трещины, плохое качество обработки поверхности и т. п.) или эксплуатационные (забоины, язвы коррозии, следы фреттинг-коррозии, трещины а зонах концентрации напряжений при малоцикловом нагружении и т. п.) дефекты, которые или сами по себе являются трещинами, или приводят к зарождению трещин после некоторого времени эксплуатации. В этом случае преобладающая часть долговечности реализуется при наличии трещин. Все это требует наряду с традиционными методами расчетов на прочность обоснования живучести деталей машин с использо-еанием критериев механики разрушения.  [c.4]

Действие коррозии идентично концентрации напряжений. Этот случай соответствует чрезвычайно большому эффективному коэффициенту концё71Трации при циклических нагрузках для большого срока службы детали — коэффициент может иметь величину порядка 10 и даже больше, но при этом отсутствует эффект концентрации средних напряжений.  [c.223]

Хотя усталостная выносливость полимеров с высокой объемной долей непрерывных однонаправленных углеродных или борных волокон обычно достаточно высока, стойкость композиций разных типов с короткими волокнами к циклическим нагрузкам значительно меньше, так как менее устойчивая матрица в этом случае подвергается большим напряжениям. В матрице легко инициируются начальные повреждения, что приводит к нарушению целостности композиционного материала, хотя волокна остаются неповрежденными. Задолго до резкого падения жесткости материала его проницаемость для воды или водяных паров сильно возрастает. Граница раздела фаз особенно чувствительна к усталостному разрушению, так как сдвиговые напряжения на границе раздела меняют свое направление в каждом цикле, а по краям волокон наблюдается особенно высокий уровень концентрации сдвиговых напряжений. Возможно также, что в композиционных материалах как с хаотическим, так и с ориентированным распределением коротких волокон, концы волокон и слабые места границы раздела служат центрами зарождения усталостных трещин.  [c.105]


Смотреть страницы где упоминается термин Концентрация напряжений циклических нагрузках : [c.369]    [c.148]    [c.81]    [c.182]    [c.174]    [c.115]    [c.278]    [c.44]   
Сопротивление материалов (1988) -- [ c.314 ]

Сопротивление материалов Издание 6 (1979) -- [ c.275 ]



ПОИСК



114 —Напряжения при нагрузке

Концентрация нагрузки

Концентрация напряжений

Нагрузка циклическая

Напряжение циклическое

Напряжения Концентрация — си. Концентрация напряжений

Шаг циклический



© 2025 Mash-xxl.info Реклама на сайте