Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Высокопрочные Применение

Наряду с формой разделки кромок и их размерами, регламентируемыми стандартами, в связи с широким применением толстолистового металла, а также высокопрочной стали возникла необходимость и в других, нестандартных их формах. Так, например, для толстолистового металла (стали, титановых сплавов) разработан метод сварки по узкому зазору (по так называемой щелевой разделке), при которой свариваемые кромки не имеют скоса, а зазор имеет величину 10 —12 мм при толщине до 100—150 мм (рис. 9, а).  [c.15]


Сварку применяют не только как способ соединения деталей, но и как технологический способ изготовления самих деталей. Сварные детали во многих случаях с успехом заменяют литые и кованые (рис. 3.2, где а — зубчатое колесо б — кронштейн в — корпус). Для изготовления сварных деталей не требуется моделей, форм или штампов. Это значительно снижает их стоимость при единичном и мелкосерийном производстве. Сварка таких изделий, как зубчатые колеса или коленчатые валы, позволяет изготовлять их более ответственные части (венец, шейка) из высокопрочных сталей, а менее ответственные (диск и ступица колеса, щека коленчатого вала) из дешевых материалов. По сравнению с литыми деталями сварные допускают меньшую толщину стенок, что позволяет снизить массу деталей и сократить расход материала. Большое распространение получили штампосварные конструкции (см. рис. 3.2, в), заменяющие фасонное литье, клепаные и другие изделия. Применение сварных и штампосварных конструкций позволяет во многих случаях снизить расход материала или массу конструкции на 30...50%, уменьшить стоимость изделий в полтора — два раза.  [c.56]

Применение пайки и склеивания в машиностроении возрастает в связи с широким внедрением новых конструкционных материалов (например, пластмасс) и высокопрочных легированных сталей, многие из которых плохо свариваются. Примерами применения пайки в машиностроении могут служить радиаторы автомобилей и тракторов, камеры сгорания жидкостных реактивных двигателей, лопатки турбин, топливные и масляные трубопроводы и др. В самолетостроении наблюдается тенденция перехода от клепаной алюминиевой  [c.68]

Появление высокопрочных сталей ставит с особой остротой вопросы жесткости. Модуль упругости сталей п.меет устойчивую величину и мало зависит от термообработки и содержания (в обычных количествах) легирующих элементов. Так как упругие деформации пропорциональны отношению напряжений к модулю упругости, то с повышением величины напряжений (а в это.м и состоит смысл применения высокопрочных материалов) величина деформаций возрастает пропорционально напряжениям жесткость падает обратно пропорционально.  [c.178]

Это справедливо в предположении, что длина деталей не изменяется, как это и бывает в большинстве случаев. Линейные размеры конструкции обычно заданы условиями работы машины. У генераторов и преобразователей энергии эти размеры зависят от рабочего объема и параметров рабочего процесса (например, у двигателей внутреннего сгорания — от размеров цилиндра зависящих, в свою очередь, от величины рабочего давления газов) у машин-орудий — от габаритов изделий, подвергаемых обработке на данной машине в металлоконструкциях — от строительной длины и высоты сооружений. Во всех этих случаях применение высокопрочных материалов может влиять лишь на сечение, но не на длину деталей.  [c.178]


Преимущества высокопрочных сталей можно в полной мере реализовать, снизив концентрацию напряжений (оптимизация формы переходов, применение концентрационно-нечувствительных материалов).  [c.302]

На рис. 158 приведен график приближенных значений для стали различных марок в зависимости от коэффициента Од и предела прочности Ов материала. Как видно из графика, чем выше прочность стали, тем выше ее чувствительность к концентрации напряжений Поэтому применение высокопрочных сталей для изготовления деталей, работающих в условиях переменных напряжений, не всегда оказывается целесообразным.  [c.228]

Как видно из графиков (рис. 563), чувствительность металла к концентрации напряжений зависит прежде всего от его свойств. При этом чем выше прочность стали, тем выше ее чувствительность к концентрации напряжений. Поэтому применение высокопрочных сталей при переменных напряжениях не всегда оказывается целесообразным.  [c.602]

Эпоксидные полимеры. ..... высокопрочные конструкционные материалы. На их основе изготовляют компаунды со свойствами, изменяющимися в широких пределах в зависимости от степени наполнения. Эффективно их применение в качестве изоляционных и антифрикционных  [c.41]

Коррозионная усталость часто бывает причиной неожиданного разрушения вибрирующих металлических конструкций, рассчитанных на надежную работу в воздушной среде при нагрузках ниже предела выносливости. Например, неточно центрированный вал гребного винта на судне будет нормально работать до тех пор, пока не появится течь и участок вала, выдерживающий максимальные знакопеременные нагрузки, не окажется в морской воде. Тогда в течение нескольких дней могут образоваться трещины, из-за которых вал быстро разрушится. Стальные штанги насосов для откачки нефти из буровых скважин имеют ограниченный срок службы ввиду коррозионной усталости, возникающей в буровых водах. Несмотря на применение высокопрочных среднелегированных сталей и увеличение толщины штанг, разрушения этого типа приносят миллионные убытки нефтяной промышленности. Металлические тросы также нередко разрушаются вследствие коррозионной усталости. Трубы, по которым подаются пар или горячие жидкости, могут разрушаться подобным образом, вследствие периодического расширения и сжатия (термические колебания).  [c.157]

Помимо отливок из серого чугуна, при изготовлении различных деталей машин широко применяют высокопрочный и ковкий чугуны. Эти чугуны по сравнению с обычным серым обладают более высокими качествами, что позволяет значительно уменьшить массу и удлинить срок эксплуатации деталей, а также расширить область применения чугуна при замене им других металлов.  [c.322]

Такие тугоплавкие высокомодульные элементы и соединения в виде волокон, обладающие исключительно высокой, приближающейся к теоретической прочности, нашли применение в легких высокопрочных композиционных материалах для новых областей механики.  [c.27]

Узкие ремни обладают повышенной тяговой способностью за счет лучшего распределения нагрузки по ширине несущего слоя, состоящего из высокопрочного синтетического корда. Применение узких ремней значительно снижает материалоемкость ременных передач. Узкие ремни пока не стандартизованы и изготовляются в соответствии с ТУ 38-40534—75.  [c.92]

В наш век с усложнением форм строительных конструкций, появлением авиастроения, разнообразными запросами машиностроения роль методов теории упругости резко изменилась. Теперь они составляют основу для построения практических методов расчета деформируемых тел и систем тел разнообразной формы. При этом в современных расчетах учитываются не только сложность формы тела и разнообразие воздействий (силовое, температурное и т. п.), но и специфика физических свойств материалов, из которых изготовлены тела. Дело в том, что в современных конструкциях наряду с традиционными материалами (сталь, дерево, бетон и т. д.) широкое применение получают новые материалы, в частности композиты, обладающие рядом специфических свойств. Так, армирование полимеров волокнами из высокопрочных материалов позволяет получить новый легкий конструкционный материал, имеющий высокие прочностные свойства, превосходящие даже прочность современных сталей. Но наличие полимерной основы наделяет такой композитный материал помимо упругих вязкими свойствами, что обязательно должно учитываться в расчетах. Даже в традиционных материалах в связи с высоким уровнем нагружения, повышенными температурами возникает необходимость в учете пластических свойств. Все эти вопросы теперь составляют предмет механики деформируемого твердого тела.  [c.7]


Проблема трещиностойкости конструкций особенно возрастает с применением современных высокопрочных материалов и повышением уровня нагруженности при создании ответственных и дорогостоящих объектов (реакторов, летательных аппаратов, крупных транспортных сооружений, хранилищ больших объемов при низких температурах и агрессивности среды и др.).  [c.370]

Опытная проверка этой теории указывает на согласующиеся в ряде случаев результаты лишь для хрупкого состояния материала (например, для легированного чугуна и высокопрочных сталей после низкого отпуска). Отметим также, что применение второй теории прочности в виде (7.5) недопустимо для материалов, не следующих закону Гука или находящихся за пределами пропорциональности.  [c.203]

Наконец, в последней, двадцатой главе излагаются основы теории высокопрочных композитных материалов волокнистого строения, нашедших применение в последние годы. Эта теория еще далека от завершения, что, вероятно, почувствует читатель.  [c.15]

Высокопрочные чугуны. Получение, структура, маркировка, область применения.  [c.158]

В зависимости от структуры фафита, металлической основы и механических свойств чугуны разделяются на три вида серые, ковкие и высокопрочные (табл. 1.4). Все они находят применение в производстве деталей узлов трения, передаточных механизмов и других устройств, работающих в условиях трения и изнашивания.  [c.19]

Анализ результатов, полученных по этим схемам, показывает, что такие стенды эффективны для оценки конструктивных изменений поршня, повышения прочностных свойств материала (введение легирующих присадок в серый чугун или переход на высокопрочный), применения поверхностных методов упрочнения (азотиров1ание, накатка, обработка дробью), допустимость литейных дефектов типа показанных на рис. 103. На них можно производить также работы по определению коэффициентов концентрации напряжений.  [c.206]

При сварке средтгелегированных глубокопрокаливающихся высокопрочных сталей необходимо выбрать такие сварочные материалы, которые обеспечат получение швов, обладающих высокой деформационной способностью при минимально возможном количестве водорода в сварочной ванне. Это может быть достигнуто применением низколегированных сварочных электродов, не содержащих в покрытии органических веществ и подвергнутых высокотемпературной прокалке (низководородистые электроды).  [c.249]

Сварка в среде защитных газов. Сварка в среде защитных газов находит широкое применение при изготовлении тонколистовых гсонструкций из низколегированных и среднелегированных высокопрочных сталей и конструкций из металла средней и большой толщины. Конструктивные элементы подготовки кромок под сварку в среде защитных газов следует выполнять в соответствии с требованиями ГОСТ 14771—69.  [c.254]

Это тоже накладывает существенные ограничения на применение метода. Действительно, для малопрочных высокопластичных материалов Ki = = 500 кгс/мм /2 и 00,2=50 кгс/мм , исходя из формулы толщина образца В долл.па быть равна 250 мм, что практически неосуществимо. Величину Ki определяют обычно на высокопрочных сталях (СТо,2> 120 кгс/мм ), разрушающихся хрупко и полухрупко.  [c.76]

Нержавсюнию стали этого класса получили применение главным образом как высокопрочные. Наиболее упрочненное состояние получается при структуре аустенит+мартенсит отпуска.  [c.494]

Это явление особенно резко выражено в деталях, изготовленных из высокопрочных легированных стале , чувствительных к концентрации напряжений, и в деталях небольших размеров. В связи с этим конструктивные концентраторы напря>сений таких деталей должны тщательно обрабатываться (шлифоваться, полироваться и т. д.) и, кроме того, упрочняться обкаткой, накаткой, обдувкой дробью и др. На рабочих чертежах деталей записью должно указываться название отделочных и упрочняющих операций и границы применения их.  [c.226]

Выбор металла открывает большие возможности снижеиня массы изделия. Наибольшая экономия металла может быть получена при использовании прочных и высокопрочных сталей, а также сплавов с высокой удельной прочностью (алюминиевых, титановых). Снижению массы изделия способствует применение более прочных холоднокатаных элементов вместо горячекатаных, а также использование термообработки. Однако повышение прочности металла нередко сопровождается ухудшением его свариваемости или снп-жение.м сопротивления разруше.иио. Поэтому экономия металла за счет повышения его прочности целесообразна только при учете всех этих факторов. Большие перспективы имеет применение композиционных материалов, например двухслойных сталей.  [c.6]

При сооружении цилиндрических резервуаров вместимостью свыше 50 000 м использовать метод рулоиирования для изготовления 6(Mнижних поясов. Применение высокопрочных сталей или конструктивных новшеств позволит, возможно, применить этот прогрессивный метод и для более крупных цилиндрических резервуаров.  [c.250]

В машинах, линейные размеры которых зависят только от прочности материалов (например, редукторы), ирнме<зенпе высокопрочных материалов позволяет наряду с уменьшенне.м сечений уменьшить длину деталей и габариты конструкции в целом. В данном случае жесткость конструкции не снижается от применения высокопрочных материалов.  [c.178]

Для изготовления строительного бетона применяют кварцевый изш гранитный песок 6о средним размером зерен 0,2—0,4 мм и щебень из прочных кристаллических пород (гранита, сиенита, диабаза, базальта) со средним размером кусков 5—10 мм. Тонкостенные машиностроительные детали изготовляют из высокопрочного бесщебенчатого бетона на основе тонкоизмельченного цемента, молотого песка с добавлением поверхностно-активных веществ и с обязате.чьным применением вибрации на всех стадиях подготовки и заливки смеси (способ Н. В. Михайлова).  [c.193]


Особую остроту приобретают вопросы жесткости в связи с появлением высокопрочных и сверхпрочных материалов, применение которых обусловливает резкое увеличение деформатнвности конструкций.  [c.202]

ГОСТ 4608—81 (СТ СЭВ 306—76) устанавливает диаметры и шаги метрической цилиндрической резьбы для соединений с натягом без применения элементов заклинипания (номинальный диаметр резьбы в диапазоне от 5 до 45 мм). Такая резьба нарезается по наружной поверхности стальных деталей, ввинчиваемых в детали из стали, высокопрочных и титановых сплавов, чугуна, алюминиевых и магниевых сплавов.  [c.298]

Ременные передачи развиваются в направлениях повышения прочности несущего слоя ремней (применение высокопрочных волокон, в том числе угольных) и повышения прочности сцепления со шкивом (применение ремней с обкладками и пропиткой, многоклиновых, зубчатых, в том числе с оптимальной формой зубьев). Введены уточнения в меха1Ш-ку работы ремня па шкивах в связи с учетом его тангенциальной податливости. Осуществлен переход на комплексный расчет ременных передач на несущую спо-  [c.487]

Принцип минимального удельного расхода материалов. Стоимость материалов и полуфабрикатов в машиностроении составляет от 40 до 80 % общей себестоимости продукции. Поэтому снижение удельного расхода материала на единицу продукции имеет большое народнохозяйственное значение. Например, при снижении расхода проката на 1 % по стране экономится 600 тыс. т металла в год, что позволяет изготовить 200 тыс. тракторов или 450 тыс. легковых автомобилей Москвич . При стандартизации заготовок и изделий экономию металла можно получить в результате использования рациональных конструктизных схем и компоновок машин, совершенствования методов расчета деталей на прочность и обоснованного снижения запаса прочности, применения экономичных профилей, периодического проката, сварных конструкций, пластмасс, литых заготовок, особенно лнтья по выплавляемым моделям. Так, внедрение на Коломенском тепловозостроительном заводе им. Куйбышева Л1ГГЫХ коленчатых валов из высокопрочного чугуна (длиной свыше 4 м, массой 1450 кг) дало 2 т экономии металла на один вал.  [c.45]

При изготовлении оболочковых конструкций в зависимости от их размеров и геометрических форм приходится выполнять прямолинейные, кольцевые, круговые, спиральные стыковые швы В зависимости от толщины стенки оболочки приемы выполнения каждого из них имеют свои специфические особенности, разнообразна и применяемая при сварке оснастка /5, 16/. Стыковые швы тонкостенных конструкций, как правило, выполняются в средс защитных газов. В качестве материала оболочек наибольшее применение получили низкоуглеродистые и низколегированные стали низкой и средней прочности, а также высокопрочные стали, титановые и алюминиевые сплавы и т.п. Сварные оболочковые конструкции средней толщины (до 40 мм) из низколегированных и низкоуглеродистых сталей изготовляются преимущественно с помощью автоматической сварки под флюсом. Конструкции, работающие в афессивных средах, выполняют из хромоникелевых и хромистых сталей и сплавов с помощью автоматической сварки под слоем флюса. Сварк> продольных и кольцевых швов выполняют, как правипо, с дв х сторон.  [c.71]

В начале 70-х годов началось интенсивное развитие специального раздела механики разрушения, посвященного вопросам трещипостойкости металлов и сплавов в условиях совместного воздействия коррозионных сред и длительных нагрузок. Первые исследования сопротивления росту коррозионных трещин с применением коэффициентов интенсивности напряжений касались длительного статического нагружения (коррозионного растрескивания). Было показано, что такие традиционно считающиеся мало активными среды, как вода, спирты, масла и т. п. вызывают докритический рост трещин в высокопрочных сталях при значениях коэффициента интенсивности напряжений К, существенно меньших вязкости разрушения Ki . В дальнейшем кардинальное воздействие коррозионных сред на докритический рост трещин было подтверждено и для ряда других высокопрочных сплавов. Исключение составляет рост трещин в условиях ползучести при повышенных температурах, а также в высокоуглеродистых низко-отпущенных сталях с мартенситной структурой. В последнем случае фактором замедленного разрушения может быть водород, оставшийся в металле после металлургического передела.  [c.337]


Смотреть страницы где упоминается термин Высокопрочные Применение : [c.124]    [c.240]    [c.338]    [c.333]    [c.185]    [c.68]    [c.528]    [c.4]    [c.32]    [c.361]    [c.17]    [c.52]    [c.187]    [c.263]   
Конструкционные материалы (1990) -- [ c.46 , c.47 ]



ПОИСК



В95 высокопрочные

Высокопрочные Рекомендуемые области применения

Высокопрочные слоистые пластмассы, их свойства и применение

Применение высокопрочной стали для сварных сосудов давления

Чугун антифрикционный — Применение высокопрочный с шаровидным

Чугун антифрикционный — Применение высокопрочный — Свойства



© 2025 Mash-xxl.info Реклама на сайте