Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Оболочки Сопряжение

В работе [1] слои рассматривались как тонкие цилиндрические оболочки, сопряженные с монолитным кольцевым швом. Рассмотрение конструкции упрош ается, если слои мысленно продолжить в тело шва. При этом внутри шва слои сцеплены, а вне шва нагружены переменным по длине контактным давлением и могут расслаиваться. В настояш ей работе для определения полей напряжений и перемеш е-ний в слоях используются уравнения теории упругости  [c.336]


Сравнивая соотношения (15.21), (15.24), (15.25) и (15.48), (15.49), (15.52), нетрудно получить следующую систему граничных условий для пакета оболочек, сопряженных со стержнем  [c.503]

В гл. 14 рассматривается безмоментная теория оболочек. Исследуются вопросы, связанные с мягкими оболочками (сопряжение одно- и двухосных зон, задача раскроя оболочки в условиях больших деформаций и т. п.), с прямоугольной мембраной.  [c.5]

Расчет котла цистерны на гидростатическое, гидродинамическое и внутреннее испытательное давление, а также на действие продольных и поперечных (опорное давление) внешних сил выполняют методами строительной механики оболочек с учетом изгибающих моментов (моментная теория). В качестве расчетной схемы принимают замкнутую цилиндрическую оболочку, сопряженную по концам с эллиптическими или сферическими днищами, опертую на шкворневые балки через систему брусьев (рамная конструкция цистерны) или жестко с ней связанную (безрамная цистерна).  [c.359]

В местах резкого изменения жесткости стенок оболочки, сопряжения с днищами, около шпангоутов, а также при заметном изменении интенсивности нагрузки могут быть существенные деформации изгиба. Поэтому расчет по безмоментной теории, в которой пренебрегается сопротивлением стенок изгибу, в таких случаях приводит к большим погрешностям. Здесь напряжения вследствие изгиба нередко имеют тот же порядок, что и мембранные напряжения. В настоящей главе изложена теория расчета ортотропной цилиндрической оболочки при осесимметричном нагружении.  [c.203]

Место установки муфты непосредственно влияет на ее габариты на быстроходных валах меньше крутящий момент, поэтому габаритные размеры муфты будут меньше, меньше ее масса и момент инерции, упрощается управление муфтой (например, сцепной). Если соединение привода и исполнительного механизма выполнено не на общей раме, от муфты требуются в первую очередь сравнительно высокие компенсирующие свойства без повышенных требований к малому моменту инерции. Важным показателем муфт является их компенсирующая способность, зависящая от величины возможного взаимного перемещения сопряженных деталей (см. рнс. 15.1) или от величины допускаемых упругих деформаций специальных податливых элементов ([А] — допускаемое осевое смещение [е] — допускаемое радиальное смещение [а] — допускаемый угол перекоса). Предохранительные муфты устанавливают на тихоходных валах, чем достигается надежность защиты деталей привода от перегрузки и повышение точности срабатывания муфты, пропорциональной величине крутящего момента. Муфты располагают у опор и тщательно балансируют. При монтаже добиваются соосности соединяемых валов. Комбинированные муфты, выполняющие упруго-компенсирующие и предохранительные функции (и другие) объединяют качества двух и более простых муфт. Специальные муфты часто конструируются с использованием стандартных элементов (пальцев, втулок, упругих оболочек, штифтов и др.). Проверочный расчет наиболее важных деталей муфты, определяющих ее работоспособность, производится только в ответственных случаях при необходимости изменения их размеров или же применения других материалов. При подборе стандартных муфт  [c.374]


Изгиб/юе напряжение в меридиональном направлении оказывается в 1,82 раза больше расчетного напряжения по безмоментной теории. Краевой эффект, как видим, приводит к заметному повышению максимальных напряжений. Еще более резкое повышение напряжений имеет место в зоне сопряжения некоторых оболочек, как, например, для цилиндра, соединенного со сферическим днищем (рис. 365). Здесь, как показывают подсчеты, при одинаковой толщине оболочек местное эквивалентное напряжение  [c.323]

Наличие различного рода жестких ребер или упругих диафрагм в пластинках и оболочках, конечно, должно существенно-усложнить точный расчет таких пространственных конструкций так как необходимо рассматривать также и контактную задачу сопряжения по граничной линии (или даже в отдельных точках), тонкой упругой оболочки с жесткими или упругими стержневыми системами. Но именно в таких сложных задачах прикладной теории упругости оказываются особенно эффективными различные формы синтеза методов строительной механики стержневых систем с методами теории упругости.  [c.68]

Рис. III.8. К определению местных напряжений в спиральной камере а — в сопряжении оболочки со статором б — в овальных сечениях в — в конических переходных сечениях г — в подкрепляющих ребрах Рис. III.8. К определению <a href="/info/4913">местных напряжений</a> в <a href="/info/170093">спиральной камере</a> а — в сопряжении оболочки со статором б — в <a href="/info/184168">овальных сечениях</a> в — в конических переходных сечениях г — в подкрепляющих ребрах
При наличии на верхней части камеры ребер, укрепляющих оболочку в месте сопряжения со статором (см. рис. И 1.3, б), жесткость увеличивается и расчет напряжений в заделке ведется с учетом повышенного момента сопроти-  [c.69]

По общей формуле <т = Т/б вычисляют напряжения во всех звеньях и расчетных точках спиральной камеры. При наличии конической оболочки, примыкающей к статору, напряжения в зоне сопряжения с козырьком определяют  [c.74]

Амплитудные значения усилия и перемещения в месте сопряжения оболочки с кольцом, т. е. при а = а [см. формулы (7.31) и (7.32)1  [c.329]

При tg Р < 2, т. е. для оболочки, нагруженной растягивающей силой, уравнение (9.46) имеет две пары ( б и 7) действительных корней (при 1 сопряженные комплексные корни iy. Во всех этих случаях деформации затухают с удалением от места приложения нагрузки.  [c.403]

Для разветвленных систем (например, для оболочек с разделительными диафрагмами) метод факторизации в форме метода жесткостей или податливостей позволяет особенно просто выполнить условия стыковки сопряженных элементов.  [c.479]

В тонкостенной оболочке, ограниченной жесткими фланцами, зоной концентрации напряжений является место сопряжения оболочки с фланцами (рис. 1.3). Проанализируем долговечность элемента на основании деформационно-кинетического критерия прочности. Применение деформационных критериев для оценки несущей способности и прогнозирования ресурса элементов конструкции, работающих nj i периодической нагрузке, основано на анализе кинетики деформированного состояния и закономерностях изменения циклических деформаций и деформаций ползучести в зоне концентрации и в мембранной зоне.  [c.7]

Радиальный момент уИп в месте сопряжения пластинки с оболочкой несложно определить из условия их совместной деформации (равенства углов поворота н смещений в месте соединения).  [c.102]

Поле температур в твэле зависит не только от геометрических параметров, но йот коэффициентов теплопроводности теплоносителя, оболочки и материала сердечника. Таким образом, задача о теплообмене пучков твэлов является сопряженной.  [c.94]

На рис. 1.1 показано три типа железобетонных защитных оболочек АЭС для блоков мощностью 700, 900 и ИЗО МВт (США). Оболочка для блока АЭС мощностью 700 МВт выполнена в виде цилиндра, имеющего 6 пилястр, сопряженного с пологим куполом и днищем. Напрягаемая арматура цилиндра состоит из вертикаль-  [c.5]


Защитная оболочка блока АЭС мощностью 900 МВт выполнена также в виде цилиндра, сопряженного с пологим куполом и плоским днищем. Цилиндр оболочки имеет три пилястры. Каждый кольцевой арматурный элемент, состоящий из 180 проволок диаметром 6,35 мм, охватывает угол 240°. Количество напрягаемых элементов уменьшилось до 335 шт., усилие их натяжения увеличилось до 10 000 кН. Купол оболочки напрягается 85 арматурными пучками.  [c.6]

Одним из результатов экспериментальных исследований [4—6, 8, 19, 20] было выявление существенного различия в работе гладких и ребристых сборных оболочек. Установлено, что в плитах ребристых оболочек действуют значительные изгибающие моменты, а в ребрах, расположенных вдоль линий сопряжения цилиндрических панелей, имеют место значительные растягивающие усилия и моменты. Результаты исследований использованы при разработке методов расчета, позволяющих учитывать влияние указанных факторов [4, 5, 8, 14].  [c.57]

Измерение перемещений и деформаций элементов модели. При испытании модели приборы устанавливали в основных расчетных сечениях в середине оболочек, на контурных элементах, в зонах сопряжения оболочек и в угловых зонах. При испытании на равномерно распределенную нагрузку приборы располагали в основном на 1/4 модели, а при испытании на сосредоточенные нагрузки— в зонах загружения (рис. 2.36).  [c.102]

У средней диафрагмы на незагруженной половине оболочки в продольном направлении действовали усилия растяжения Oi, составлявшие 15—20% усилий в тех же сечениях при нагрузке по всей оболочке (см. рис. 2.52). В направлении меньшего пролета между оболочками действовало сжатие, а при нагрузке у средней диафрагмы — растяжение. В зоне сопряжения оболочек имели место отрицательные моменты.  [c.118]

Колебания размеров отливки имеют особое значение на участках сопряжения черных стенок с поверхностями, подвергающимися мезщни-ческой обработке. Точность механической обработки во много раз вьипе точности литейных размеров. Литую деталь можно схематически рассматривать как жесткий остов из поверхностей механической обработки, окруженный плавающей оболочкой черных поверхностей.  [c.95]

Допускается непосредственное редактирование граней и ребер модели. Есть функция, удаляющая дополнительные поверхности и ребра, появившиеся после выполнения команд FILLET (СОПРЯЖЕНИЕ) и HAMFER (ФАСКА). Можно изменять цвет граней и ребер и создавать их копии, области, отрезки, дуги, круги, эллипсы и сплайны. Путем клеймения (то есть нанесения геометрических объектов на грани) создаются новые грани или сливаются имеющиеся избыточные. Смещение граней изменяет их пространственное положение в твердотельной модели. С помощью этой операции, например, нетрудно увеличивать и уменьшать диаметры отверстий. Функция разделения создает из одного тела несколько новых независимых тел. И, наконец, имеется возможность преобразования тел в тонкостенные оболочки заданной толщины.  [c.343]

Для предотвращения изгиба оболочки в местах перехода ставятся кольца жесткости. Обычно они изготовляются из уголков, развалкованных под нужным углом. Кольца жесткости принимают на себя неуравновешенную составляющую меридиональных усилий, возникающих в оболочке резервуара в месте сопряжения отдельных ее частей.  [c.376]

Результаты исследований напряжений в модельных и натурных статорах показывают, что в литых и сварно-литых высоконапорных спиральных камерах с короткими, относительно широкими и достаточно массивными колоннами пояса статоров деформируются мало, а в статорах средненапорных радиальноосевых турбин деформации поясов в зоне сопряжения с оболочкой значительно уменьшаются в забетонированном состоянии. Напряжения в переходном сечении от колонны к статс ру в незабетонированном состоянии в 2,0—2,5 раза превышают эти же напряжения при незабетонированном статоре. Это подтверждается испытаниями, проведенными на моделях спиральных камер красноярских турбин [4]. Получить подтверждение этих результатов расчетом полностью не удается, хотя существует много различных методов.  [c.77]

Широкие возможности метода намотки позволяют получать конструкции с любым законом изменения толщины. Оболочки переменной толщины рассмотрены в работе Валента [293]. В результате анализа напряженного состояния днища цилиндрического баллона давления переменной толщины Грещук [100] установил, что оптимальный радиус кривизны меридиана днища в месте его сопряжения с цилиндрической частью, обеспечивающей отсутствие краевого эффекта, составляет примерно 60% от радиуса цилиндрической части баллона (при расчете по сетчатой модели оболочки эта величина составляет 50% ).  [c.226]

Таким образом, поступают, например, при изучении концентрации напряжений в толстостенных композитных элементах (см. рис. 2.8). Как уже отмечалось, для изучения концентрации напряжений в вершинах вырезов на поверхности внутреннего канала (в точках 1 на рис. 2.8) от действия внутреннего давления допустимо использовать плоские модели, имеющие форму поперечного сечения К01МПОЗИТНОЙ трубы. Для испытания их необходимо довольно сложное приспособление. Кроме того, чтобы получить в модели с оболочкой достаточное для проведения точных измерений число полос, нужно создать довольно большО е давление, потому что около 90% давления прихо дится на деформацию жесткой оболочки. Однако при определенных условиях можно воспользоваться моделью без оболочки. Так, при достаточно большой толщине свода ш = Ь—а (примерно при ш/Ъ>0,2) контактное давление рк на поверхности сопряжения можно принять равномерным. В этом случае приходим к схеме плоской модели без оболочки, нагруженной дав-  [c.43]

Блок ввода геометрических параметров оболочки (zq, г ) и определение недостающих (Ф , s ) параметров подпрограмма ВУПР). Для аппроксимации геометрии срединной поверхности используется кубический сплайн подпрограммы SPLFT и KSP). Данная подпрограмма предусматривает автоматический режим (когда функция г о (zq) является периодической, то вводятся и определяются геометрические параметры только на первом полугоф-ре) и задание и Zq на всем протяжении меридиана. Если гофр состоит из сопряженных полуарок, достаточно задать высоту подъема полуарки, длину ее основания, средний радиус оболочки и число точек на одном полугофре.  [c.153]


Конструктивные особенности оболочечных зпементов конструкций, работающих при высоких термоциклических нагрузках. Корпус газотурбинной установки представляет собой последовательное соединение корпусных оболочечных элементов компрессора 1, камеры сгорания 2, турбины 3 и выхлопного устройства, состоящего из диффузора 4 и соплового устройства 7, соединенных с помощью телескопического кольца 6, а также воспламенителя 5 (рис. 4,1). Перечисленные оболочечные элементы имеют сложную конструктивную форму и представляют сочетание плоских круглых пластин (фланец), цилиндрических и конических оболочек (корпус), сопряженных переходными поверхностями (рис. 4.2).  [c.171]

Рис. 4.27. Кривые распределения осевых термоупругих напряжений на внешней (сплоишые линии) и внутренней (штрих-1 ктирные) поверхностях ререходной зоны модельного цилиндрического корпуса в зависимости от радиуса сопряжения фланца с оболочкой Рис. 4.27. <a href="/info/5915">Кривые распределения</a> осевых <a href="/info/183649">термоупругих напряжений</a> на внешней (сплоишые линии) и внутренней (штрих-1 ктирные) поверхностях ререходной зоны модельного цилиндрического корпуса в зависимости от <a href="/info/405109">радиуса сопряжения</a> фланца с оболочкой
Рис. 4.28. Кривые распределения интенсивности термоупругих напряжений на внешней (сплошные линии) и внутренней (штрихпунктирные) поверхностях переходной зоны модельного цилиндрическото ксч>пуса (Ri = 470) в зависимости от радиуса сопряжения фланца с оболочкой Рис. 4.28. <a href="/info/5915">Кривые распределения</a> интенсивности <a href="/info/183649">термоупругих напряжений</a> на внешней (<a href="/info/232485">сплошные линии</a>) и внутренней (штрихпунктирные) <a href="/info/208917">поверхностях переходной</a> зоны модельного цилиндрическото ксч>пуса (Ri = 470) в зависимости от <a href="/info/405109">радиуса сопряжения</a> фланца с оболочкой
При использовании упрощенной модели в виде соединения двух оболочек разной длины удается снизить ограничения, присущие толстостенным деталям. Однако область использования оболочеч-ных моделей ограничена то нкостеиными конструкциями. К расчетной схеме соединения оболочек с натягом можно свести распространенные случаи сопряжения деталей машин посадка подшипника на полный вал, бандажный узел ротора турбогенератора н др.  [c.82]

При малой июроховатости (лк—>-0) разрыв контакта в соединении оболочек практически неизбежен. В случае сопряжения абсолютно гладких короткой и длинной оболочек возможен контакт по двум концевым окружностям [21], а при увеличении длины — по трем окрух<иостям (третья — в середине короткой оболочки). Наличие разрывов в контакте оболочек и точечный характер контакта был выявлен практически во всех работах, в которых рассматривалась эта задача [16, 21] и др.  [c.83]

Введем в рассмотрение перемещение пластинки Ап и угол поворота сечения ее в месте сопряжения с оболочкой 9п, тогда условия совместности перемещенртй примут вид  [c.103]

Внутренняя стальная сферическая оболочка рассчитана на аварийное давление 0,48 МПа и температуру 135—140° С. Для оболочки применена листовая мелкозернистая сталь (а = 360 МПа) толщиной 29—30 мм. Оболочка смонтирована из 544 блоков размером 6x6 м. Полная длина сварных швов составляет 5000 м, коэффициент свариваемости шва — 0,9. Оболочка монтировалась в два этапа за 3,5 месяца был смонтирован ее нижний участок (800 т стального листа), затем в течение 6 месяцев укладывался бетон во внутреннюю часть, после чего 8,5 месяцев возводился второй (верхний) участок (1750 т стального листа). В месте сопряжения участка сферы, лежащего на жестком железобетонном основании, с участком, расположенным выше и не имеющим опирания на железобетонные конструкции, устроен мягкий переход, снижающий величину местных изгибающих моментов. Переход выполнен укладкой в зоне плит из стиропора с дополнительным уплотнением зоны полосовым материалом, длительное время сохраняющим эластичность.  [c.7]

Наружная железобетонная оболочка выполнена монолитной, состоящей из цилиндра, сопряженного с куполом и днищем. Минимальное расстояние между оболочками — 1,30 м, толщина стенки цилиндра—1,6 м, толщина полусферы колеблется в интервале 0,8—1,2 м. Оболочка бетонировалась в переставной опалубке, которая по кольцу разделена на элементы шириной 1,425 и высотой 4,85 м. Наружная и внутренняя опалубки соединены болтами. Внутренняя опалубка купола разделена на элементы с максимальной длиной 9 м, наружная — на элементы с длиной 6 м, высота бетонирования купола составляет 3,425 м. За 9 месяцев в купол уложено 4700 м бетона и 900 т стали. Продолжительность строительства I блока АЭС Библис составляла 55 месяцев, II блока — 49 месяцев.  [c.8]

Защитная оболочка НВАЭС имеет форму цилиндра, сопряжен-  [c.9]

Методом конечного элемента можно непосредственно рассчитывать участки оболочки со шлюзом. В качестве примера на рис. 1.28 и 1.29 показано распределение усилий по вертикальному и горизонтальному сечениям в оболочке, проходящим через ось шлюза, от продольных сил преднапряжения сооружения 10 000 кН/м (интенсивность обжатия бетона — 8,33 МПа) и его кольцевого обжатия внешним давлением 5,2 МПа. В расчете рассматривалась цилиндрическая оболочка с радиусом срединной поверхности, равным 23,1 м, толщиной стенки 1,2 м, увеличенной в зоне шлюза диаметром 3 до 2 м. При определении в вертикальном сечении усилий Оу, направленных перпендикулярно к направлению нагрузки, рассматривались три варианта решения оболочки без утолщения у шлюза с утолщением, расположенным симметрично срединной поверхности с утолщением с внешней стороны. При отсутствии утолщения максимальные растягивающие напряжения, действующие перпендикулярно к нагрузке, равны интенсивности обжатия, рис. 1.29, а при увеличении толщины оболочки симметрично с двух сторон максимальные напряжения растяжения (Ту соответственно снизились при размещении утолщения с наружной стороны максимальные растягивающие напряжения сгу, действовавшие по центру утолщения, составляли 6,8 МПа, т. е. уменьшились по сравнению с напряжениями для оболочки без утолщения незначительно. Усилия в направлении нагрузки по этому сечению при симметричном и несимметричном размещениях утолщения были близки между собой. Характер распределения в вертикальном сечении моментов, действующих в вертикальном направлении, соответствует моментам при внецентренном сопряжении двух цилиндрических оболочек. Из рисунка видно также, что концентрация максимальных сжимающих напряжений, действующих по горизонтальному сечению в направлении нагрузки, вследствие утолщений снизилась в два раза.  [c.49]

Предварительно напряженные контурные фермы (длиной 18, 24, 30 м) выполняются с раскосами. Для передачи на них с оболочки усилий сдвига фермы имеют концевые упоры. Покрытие во взаимно перпендикулярных направлениях спроектировано как многоволновое. Проектом предусматривается тангенциально подвижное сопряжение оболочки с верхним поясом контурной фермы. Технико-экономические показатели этих конструкций приведены в табл. 2.1. Существенное отличие этого проекта от рассмотренных выше состоит в выполнении зоны сопряжения двух оболочек. В центре промежуточной диафрагмы смежные оболочки не имеют жесткого соединения между собой. Ребра панелей у промел<уточ-иой диафрагмы соединены между собой и образуют контурный криволинейный брус оболочки, который свободно лежит на верхнем поясе фермы в середине ее пролета и упирается в уступы, имеющиеся в ее приопорной зоне. При такой конструкции соединения ячеек покрытия исчезают усилия растяжения между смежными оболочками, действующие у средней зоны промежуточной диафрагмы в перпендикулярном к ней направлении. Однако при этом в зоне скользящего опирания оболочки на контур в панелях возрастут положительные краевые моменты, увеличатся усилия растяжения в нижних поясах контурных диафрагм и увеличатся главные сжимающие и растягивающие усилия в углах оболочки. Такое соединение элементов покрытия менее целесообразно в случае приложений к диафрагмам значительных сосредоточенных сил.  [c.69]



Смотреть страницы где упоминается термин Оболочки Сопряжение : [c.546]    [c.65]    [c.70]    [c.30]    [c.7]    [c.10]    [c.81]    [c.109]    [c.115]    [c.170]   
Прочность устойчивость колебания Том 2 (1968) -- [ c.24 , c.26 ]



ПОИСК



Дверес. Определение концентрации напряжений в сопряжениях оболочек и пластин

Круговые кольца — Применение для упругие — Запрессовка в оболочки вращения 33, 34 — Применение для подкрепления края оболочек вращения 19—23 39—41 Применение для сопряжения двух

Оболочки Сопряжение через упругое кольц

Оболочки Условия сопряжения упругого

Определение площади шпангоутов в местах сопряжения оболочек различных очертаний

Расчет аппаратов с учетом сопряжений оболочек

Расчет осесимметрично нагруженных оболочек вращения в зонах их сопряжения

Расчет сопряжения соосных оболочек вращения при осесимметричной нагрузке по предельному состоянию

Сопряжение

Сопряжение оболочек вращения состав

Схема решения задачи о сопряжении оболочки или пластины с рядом кольцевых ребер

Условия сопряжения многослойных оболочек вращения с кольцевыми подкрепляющими элементами



© 2025 Mash-xxl.info Реклама на сайте