Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Уравнения состояния нелинейно упругих сред

Уравнения состояния нелинейно упругих сред  [c.20]

В этом случае используется тензор напряжений Коши и уравнение состояния нелинейно-упругой среды имеет вид  [c.22]

Термодинамические соображения, которые были развиты выше, относятся и к деформации тела при сложном напряженном состоянии здесь также можно поставить вопрос о представлении равновесной пластической деформации уравнениями состояния нелинейно-упругого тела. В связи с этим необходимо выяснить, каковы возможные формы уравнений состояния нелинейно-упругого тела. Для проведения соответствующего термодинамического анализа нужно охарактеризовать свойства рассматриваемой среды.  [c.47]


Сложное напряженное состояние нелинейно упругой среды описывается уравнениями теории упруго-пластической деформации (уравнениями Генки, см. гл. 3).  [c.133]

Таким образом, решение задачи для физически нелинейной упругой среды сводится к решению уравнений равновесия (4.4) гл. III и уравнений совместности деформаций (4.6) гл. III с учетом соотношений (4). Очевидно, что рассмотрение задач плоской деформации и плоского напряженного состояния (как и для линейной среды) можно проводить единым образом, поскольку различие сказывается лишь на значениях постоянных.  [c.668]

Плоские и осесимметричные контактные задачи для физически нелинейного (линейного геометрически) и геометрически нелинейного (гармонического типа) материала исследовались И. В. Воротынцевой [13] совместно с В. М. Александровым [3] и с Е. В. Коваленко [14]. С помощью соответствующих интегральных преобразований задачи сведены к решению интегральных уравнений с нерегулярными разностными ядрами. Структура этих уравнений совпадает со структурой соответствующих уравнений классической теории упругости, а свойства символов их ядер позволяют использовать для решения асимптотические методы больших и малых Л , развитые в работах В. М. Александрова. Влияние нелинейных свойств среды и начальных напряжений на контактную жесткость, функцию распределения контактных напряжений и величину вдавливающей силы в плоском случае исследовано в [13], в осесимметричном случае — в [3,14]. В работах установлено, что начальные напряжения не влияют на порядок особенности на краях штампа, но влияют на проникающую составляющую решения как в области контакта, так и вне ее. Исследованы условия потери внутренней устойчивости среды в зависимости от начальных напряжений. Для ряда конкретных нелинейно-упругих сред построены области эллиптичности линеаризованных уравнений, при переходе через границу которых происходит либо потеря поверхностной устойчивости, либо потеря поверхностной деформируемости, связанные с потерей эллиптичности. В работе установлено, что при стыковке решений, полученных методами больших и малых Л , значение относительной толщины Л, на которой стыкуются эти методы, существенно зависит от параметров начального напряженного состояния среды.  [c.237]


Если исследовать в общем виде задачу о распространении волн в простых жидкостях с исчезающей памятью, то скорость распространения оказывается равной корню квадратному из отношения модуля упругости и плотности. Модуль упругости должен оцениваться локально величиной ц/Л он определяется только при распространении волны в покоящейся среде. Волны ускорения (т. е. разрывы ускорения, соответствующие разрывам скорости деформации) могут затухать в процессе их распространения, но могут также и возрастать по амплитуде, перерождаясь в ударные волны (разрывы скорости) за конечное время. Последняя ситуация возникает при условии, что начальная амплитуда волны достаточно велика, и при условии, что уравнение состояния в достаточной степени нелинейно. Интересно, что волна, распростра-  [c.296]

Рассмотрим несколько типовых задач, к решению которых сводится исследование случайных колебаний нелинейных механических систем. В качестве основного методического примера здесь и в дальнейшем будем использовать одномассовую нелинейно-упругую систему, двигающуюся в вязкой среде. Пусть состояние (движение) системы описывается дифференциальным уравнением второго порядка -  [c.6]

Тензоры напряжений Пиола и Кирхгофа, с одной стороны, являются удобными вспомогательными тензорами, непосредственно не определяю-ш,ими реальное напряженное состояние. Определение последнего всегда требует возвращения к истинному тензору напряжений Коши. С другой стороны, тензоры Пиола и Кирхгофа играют важную роль в нелинейной теории упругости при построении определяющих соотношений, в частности, в представлении уравнений состояния для гиперупругих, т. е. имеющих упругий потенциал, сред, поскольку тензор Пиола сопряжен тензору градиента места, а тензор Кирхгофа — тензору деформации Коши-Грина.  [c.20]

Формулы (2.2.9)-(2.2.12) представляют собой функции, заданные в базисе начально-деформированной конфигурации и определяющие напряженное состояние упругой среды в возмущенной конфигурации. Нетрудно заметить, что тензор (2.2.12), участвующий в представлениях уравнений движения (2.2.6) и граничных условиях (2.2.7), является линейной функцией относительно тензора Viu, но в то же время нелинейной относительно градиента начальной деформации i.  [c.40]

Целью данного изложения не было описание точных теорий, содержащих хорошо известные и выверенные уравнения. В этих классических теориях требуется лишь проинтегрировать уравнения, и механическая задача сводится к задаче чисто математической, где можно пользоваться наиболее изящными методами, привлекать в полной мере функциональный анализ, теорию распределений и т. п. Что касается основ, т. е. законов баланса и уравнений состояния, то они предполагаются раз навсегда принятыми. В классических теориях уравнения состояния берутся насколько можно более простыми несжимаемость и закон Паскаля для идеальной жидкости, закон Гука для линейной упругой среды. (Например, в нелинейной упругости разве много есть задач, решенных в элементарном, замкнутом виде ) На этой относительно примитивной основе можно построить огромные здания гидродинамики и теории упругости.  [c.68]

Таким образом, учет квадратичного члена в уравнении состояния приводит к зависимости местной скорости с от перемен юй величины V. Эта зависимость обусловлена только упругой нелинейностью среды, которая, согласно (IV. 16), определяется отношением коэффициентов при квадратичном и линейном членах адиабатического уравнения состояния (IV. 14). В силу этого отношение В К принято называть нелинейным параметром среды.  [c.70]

Общая постановка плоских контактных задач для полупространства и слоя, подверженных одновременному воздействию сил тяжести и однородных, ориентированных вдоль границы, начальных напряжений дана в работе В. М. Александрова и Н. X. Арутюняна [1]. Предполагалось, что материал среды является несжимаемым и описывается либо уравнениями физически нелинейной (геометрически линейной) теории установившейся ползучести, либо уравнениями геометрически нелинейной (физически линейной) теории упругости. В предположении, что силы трения в области контакта отсутствуют, изучена проблема эллиптичности линеаризованных уравнений (внутренней устойчивости среды), исследованы явления поверхностной неустойчивости среды. В качестве иллюстрации проведен анализ влияния механических свойств и начального напряженного состояния среды на контактную жесткость. Для потенциала Муни обнаружены значения начальных напряжений, при которых упругий континуум начинает работать как основание Винклера.  [c.236]


Функционал, стационарность которого рассматривается, должен быть выражен через тензор напряжений или его инварианты, если среда изотропна геометрические величины не должны в него входить. В линейной теории упругости это не сопряжено с трудностями, так как выражение линейного тензора деформации через тензор напряжений Т известно и это позволяет сразу же получить представление удельной потенциальной энергии через напряжения. В нелинейной теории эта процедура требует обращения уравнения состояния материала о практической неосуществимости такой операции в общем случае (для любого материала) говорилось в 14 и II, 8. Но ход вывода принципа стационарности дополнительной работы требует предположения, что обращение осуществлено принимается, что соотношение  [c.141]

Математические аспекты задач о распространении линейных и нелинейных волн в средах, описываемых уравнением состояния (2.230) с тензором модулей упругости (2.231) при О < а < 1 рассмотрены, например, в работах [72, 73].  [c.87]

Модели физически нелинейной среды при циклическом упруго-пластическом деформировании. При анализе кинетики НДС в наиболее нагруженных зонах элементов конструкций необходимо использовать модели физически нелинейной среды, достаточно полно отражающие основные особенности поведения материала в условиях, близких к эксплуатационным. В общем случае такие модели устанавливают нелинейную связь между циклическими напряжениями и деформациями, либо между их производными, причем указанные зависимости (уравнения состояния, или определяющие уравнения) должны учитывать характерные режимы деформирования и нагрева, а также влияние истории нагружения (поцикловой и временной).  [c.78]

Опыты Треска в области текучести, выполненные столетие назад, все еще неудовлетворительно объяснены с позиций экспериментатора, мыслящего в терминах количественных соотношений. В последнее время наши знания в области физики больших деформаций существенно пополнились новыми фактами в связи с опытами в таких направлениях, как термопластичность, динамическая пластичность и пластичность монокристаллов. Среди множества обна руженных фундаментальных физических фактов имеется и тот, что пластическая деформация кристаллов неоднородна. Экспериментально установлено, что для полностью отожженных кристаллических тел уравнения состояния должны включать переходы второго порядка при фиксированных углах сдвига, дискретное (квантованное) распределение форм деформаций и эффект Савара — Массона. Раньше или позднее, соответствующее развитие теории континуума для этого класса твердых тел должно включить учет этих явлений. С другой стороны, касаясь эластичности резины при больших деформациях, прогресс был достигнут при сопоставлении нелинейной теории упругости и эксперимента, но свойства этого  [c.382]

Нелинейные эффекты при движении однородной жидкости. Экспериментальные исследования образцов насыщенных горных пород (Д. А. Антонов, 1957 Н- С. Гудок и М. М. Кусаков, 1958 Д. В. Кутовая, 1962 В. М. Добрынин, 1965) выявили существенно нелинейный характер зависимости деформаций скелета сцементированной породы (и ее пористости) от больших изменений напряженного состояния. Известны попытки учета нелинейного характера пористости в уравнении пьезопроводности (А. Н. Хованский, 1953). Однако определяющие отклонения от линейной теории упругого режима связаны с изменениями проницаемости, сопутствующими указанным деформациям. Эти изменения проницаемости особенно велики в трещиновато-пористых средах. В связи с этим была развита схема нелинейно-упругого режима фильтрации, учитывающая отклонения от линейной связи пористость — пластовое давление и сопутствующие изменения проницаемости. При этом сначала (А. Бан, К. С. Басниев и В. Н. Николаевский, 1961) использовалось приближение экспериментальных зависимостей степенными рядами. Результирующие уравнения были выписаны и для случаев фильтрации капельной жидкости в пористых (или чисто трещиноватых) и трещиновато-пористых пластах и фильтрации газа в пористых (чисто трещиноватых) пластах. Были построены стационарные решения (А. Бан и др., 1961, 1962), соответствующим образом обобщающие формулу Дюпюи. Полученные формулы использовались для обработки индикаторных линий скважин, т. е. зависимостей дебит— пластовая депрессия , получаемых при исследовании скважин на установившийся приток (А. Бан и др., 1961 К. С. Басниев, 1964).  [c.633]

В его модели учтены все основные механические свойства грунтов, существенные для динамических процессов (нелинейная и необратимая объемная деформируемость, упруго-пластический сдвиг, зависимость предела упругости при сдвиге от давления). Объемная деформация предполагается зависящей только от среднего давления (необратимым образом), тем самым игнорируются эффекты дилатансии. Сдвиговая деформируемость в допредельном состоянии описывается по линейно упругой схеме, а в предельном состоянии — по схеме Прандтля — Рейсса с условием пластичности тина Мизеса — Шлейхера — Боткина. Автором предлагается эту модель использовать как для быстрых динамических процессов, так и для статических в условиях, когда не проявляются временные эффекты, с учетом того, что для динамики и статики конкретный вид определяющих среду уравнений состояния и значения механических параметров могут быть различными.  [c.224]

Рассмотрены автомодельные рещения уравнений теории упругости при малой нелинейности и анизотропии, зависящие от отношения декартовых координат х/у ъ случае, когда упругая среда движется относительно этой системы координат со сверхзвуковой скоростью. Доказано, что для квазипоперечных волн в силу того, что нелинейные члены в уравнениях, описывающих эти волны, имеют порядок (величина е характеризует отклонение от ненапряженного состояния), изменения величин в непрерывных волнах ( 6.1) и на разрывах ( 6.2) не отличаются с принятой в книге точностью рписания от изменений в плоских волнах с некоторой заранее выбранной ориентацией.  [c.296]


Дифракцп . , или рассеяние света на звуке феноменологически можно описать, если в уравнениях состояния среды учесть нелинейные перекрестные члены, отвечающие электромагнитному полю и упругим деформациям. Электромагнитная и акустическая волны должны при этом удовлетворять соответственно уравнениям Максвелла и механическому уравнению движения. Единственный перекрестный член, отвечающий за взаимодействие, появляется в уравнении состояния для индукции, которое будет теперь выглядеть следующим образом (см. также (11.2.3))  [c.340]

КОЛЕБАНИЯ (вынужденные [возникают в какой-либо системе под влиянием внешнего воздействия переменного пружинного маятника (характеризуется переходным режимом и установившимся состоянием вынужденных колебаний резонанс выявляется резким возрастанием вынужденных механических колебаний при приближении угловой частоты гармонических колебаний возмущающей силы к значению резонансной частоты) электрические осуществляют в электрическом колебательном контуре с включением в него источника электрической энергии, ЭДС которого изменяется с течением времени] гармонические относятся к периодическим колебаниям, а изменение состояния их происходит по закону синуса или косинуса затухающие характеризуются уменьшающимися значениями размаха колебаний с течением времени, вызываемых трением, сопротивлением окружающей среды и возбуждением волн когерентные должны быть гармоническими и иметь одинаковую частоту и постоянную разность фаз во времени комбинационные возникают при воздействии на нелинейную колебательную систему двух или большего числа гармонических колебаний с различными частотами кристаллической решетки является одним из основных видов внутреннего движения твердого тела, при котором составляющие его частицы колеблются около положений равновесия крутильные возршкают в упругой системе при периодически меняющейся деформации кручения отдельных ее элементов магнитострикционные возникают в ферромагнетиках при их намагничивании в периодически изменяющемся магнитном поле модулированные имеют частоту, меньшую, чем частота колебаний, а также определенный закон изменения амплитуды, частоты или фазы колебаний неавтономные описываются уравнениями, в которые явно входит время некогерентные характерны для гармонических колебаний, частоты которых различны незатухающие не меняют свою энергию со временем нормальные относятся к гармоническим собственным колебаниям в линейных колебательных системах  [c.242]

Задание закона состояния приводит к замкнутой системе дифференциальных уравнений, по которой определяется реализуе- мое в теле напряженное состояние и вектор перемещения точек среды. Из сказанного следует, что в линейной постановке задача определения формы и размеров упругого тела в конечном состоянии отодвигается на второй план—их находят после того, как задача решена в предполон<ении неизменности начальной формы тела. Этот прием позволяет избежать серьезной трудности нелинейной теории упругости, когда напряженное состояние приходится разыскивать в 1/-объеме — в теле с неизвестной наперед границей О. Его законность подтверждается тем, что при решении задач нелинейной теории упругости методом последовательных приближений, например в форме ряда по степеням параметра ма.пости, характеризующего малость градиента вектора перемещения, исходное приближение, получаемое при пренебрежении слагаемыми, содержащими этот параметр, представляет решение задачи для линейно-упругого тела, когда определяющие уравнения отнесены к начальному объему и начальной форме его границы.  [c.102]

Можно заключить, что классическая теория описывает поведение сред с микроструктурой только в том случае, если элементы микроструктуры как целые имеют пренебрен имо малые повороты и перемещения. В противном случае уравнения совместности (8) для всего тела не имеют смысла. В однородном теле в исходном состоянии упругая деформация как бы нодготавлив-ает микроструктуру, и если поворотами и перемещениями элементов нельзя, пренебречь, классическая теория упругости не в состоянии описать процесс деформирования. Как отмечалось выше, нелинейная теория, учитывающая повороты, в какой-то степени берет во внимание образование микроструктуры, т. е. устойчивость упругого равновесия. Но в этом случае уравнение сплошности для тела в целом теряет смысл.  [c.103]


Смотреть страницы где упоминается термин Уравнения состояния нелинейно упругих сред : [c.101]    [c.34]    [c.46]   
Смотреть главы в:

Динамические контактные задачи для предварительно напряженных полуограниченных тел  -> Уравнения состояния нелинейно упругих сред



ПОИСК



Нелинейность уравнений

Состояние упругое

Среда нелинейная

Среда упругая

Упругость нелинейная

Упругость среды

Уравнение нелинейное

Уравнение состояния

Уравнения Уравнения упругости

Уравнения упругого КА

Уравнения упругости



© 2025 Mash-xxl.info Реклама на сайте