Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Градиент относительный

Исследование трещин на поверхностях показало, что они возникали в результате многоциклового усталостного разрушения. Данные испытаний образцов и летных испытаний показали, что динамические напряжения вследствие колебаний очень высоки, тогда как статические напряжения, обусловленные температурными градиентами, относительно невелики. Спектральный анализ показал, что возбуждение вследствие работы двигателя и выходных лопаток носило в основном дискретный характер, в то время как широкополосное возбуждение было обусловлено турбулентным входным потоком. Некоторые результаты исследования в полосе частот колебаний, соответствующей одной трети октавы, представлены на рис. 6.54 в виде диаграммы  [c.335]


Таким образом, изменение давления поперек канала вызвано градиентом относительной скорости, обусловленным действием массовых кориолисовых сил инерции в относительном движении. Силы, возникающие в результате существования градиента давления, совершают работу (и — и ) в абсолютном движении.  [c.16]

Молекулярный поток вещества к-ц компоненты определяется законом диффузии. При наличии градиента относительной концентрации Vpi i темпера-  [c.14]

Используя полярное разложение градиента относительной деформации и дифференцируя по времени, определяем скорость натяжения D и спин W  [c.74]

Пар диффундирует от поверхности жидкости в воздух иод влиянием градиента относительной концентрации dpx jdy (рис. 3-12), одновременно воздух диффундирует к поверхности жидкости в обратном направлении под влиянием градиента относительной концентрации воздуха д( ду.  [c.196]

Градиент парциального давления пара прямо пропорционален градиенту относительной концентрации р (pio = pi/p)  [c.361]

Остальные 9 производных образуют матрицу градиентов относительных смещений  [c.8]

Напряжение в волне вращения, как показывают формулы (67), в каждом сечении пропорционально градиенту относительно Z величины вращения Из верхнего рисунка 102 видно, что в то время как А и А имеют противоположные знаки, связанные с ними волны напряжений В н В имеют одинаковые знаки. Таким образом, когда волны В и В  [c.464]

Известно, что градиент температур в смеси жидкого раствора приводит к возникновению градиента относительной концентрации компонентов смеси, и если смеси как целое находятся в состоянии покоя, то действие термодиффузии уравновешивается действием обыкновенной диффузии.  [c.117]

Пар диффундирует от поверхности жидкости в воздух под влиянием градиента относительной концентрации йрю/Эг/  [c.211]

Во всех случаях конвективного теплообмена в непосредственной близости к поверхности теплоотдачи существует ламинарный подслой, в котором передача тепла осуществляется за счет теплопроводности. При малых проекциях градиента давления на перпендикуляр к теплообменной поверхности градиент относительной плотности будет равен по величине градиенту относительной температуры, но противоположен по направлению.  [c.22]

Аддитивная схема при этой схеме измерений на некоторой начальной точке производится базовый замер параметров противокоррозионной защиты относительно медно-сульфатного электрода, включающий в себя значения потенциалов включения и выключения, градиентов потенциалов включения и выключения, разности потенциалов между используемыми медно-сульфатными электродами. Эти параметры вводятся в память измерительного компьютера. Сам измерительный компьютер подключения к газопроводу не требует, так как компьютер складывает измеряемые продольные градиенты относительно базового значения, и мы получаем и регистрируем в контролируемых точках через короткие интервалы следующие параметры  [c.126]


Применение теоремы полярного разложения к градиенту деформации F позволяет выделить тензор вращения R, правый тензор деформации U и левый тензор деформации V. Эти тензоры являются относительными тензорами, и если они записаны без индекса, то считается, что они отнесены к моменту наблюдения. Геометрическая интерпретация тензоров R, U и V будет дана ниже.  [c.93]

Градиент деформации Рд (т) относительно R в момент т определяется как  [c.159]

Таблица 4 Относительный градиент напряжений Таблица 4 Относительный градиент напряжений
Равновесная структура зависит от ориентации решетки вблизи поверхности относительно направления градиента потенциала. Перемена полярности тока лампы приводит поэтому к сильным изменениям структуры поверхности и в градуированных лампах ее следует избегать.  [c.358]

Если фазы находятся в относительном движении, характер поверхностной конвекции становится турбулентным. Это выражается в том, что сокращения и растяжения поверхности раздела фаз происходят гораздо сильнее. Поток вещества, обусловленный такими изменениями поверхностного натяжения, интенсифицирует перенос целевого компонента через межфазную границу и вызывает последующее сильное его перемешивание внутри каждой фазы. Данное явление было названо поверхностной турбулентностью [5]. При больших значениях градиента концентрации целевого компонента у поверхности раздела фаз и значениях градиента поверхностного натяжения, близких к критическим, поверхностная турбулентность может иметь место вдоль всей межфазной границы при малых значениях градиента концентрации целевого компонента поверхностная турбулентность может наблюдаться лишь на части поверхности раздела.  [c.8]

Если мелкая частица п.ли капля испытывает воздействие градиента концентрации пара, например если ее поверхность смочена быстро испаряющейся жидкостью или если происходит конденса-Ц 1я пересыщенного пара на капле, то имеет место относительное движение капли и пара, известное как течение Стефана [242]. Для сферических капли или частицы скорость относительного движения равна  [c.45]

В результате появляется поток тепловой энергии в сторону более холодных слоев плазмы, пропорциональный относительной величине перепада температур, т. е. температурному градиенту  [c.57]

Поскольку всегда на поверхности ограниченного тела существует градиент концентрации водорода, происходит непрерывный выход Нд в атмосферу. Через определенный промежуток времени практически весь водород должен десорбироваться из металла, учитывая переход от одной формы существования водорода к другой. При нормальной температуре относительно быстро десорбируется из металла основная часть Нд, причем переход закрепленного водорода в Нд развивается чрезвычайно  [c.533]

Если в каждой точке пространства определено значение некоторой физической величины, то говорят, что имеется поле этой величины. Может, например, существовать температурное поле, поле плотностей, концентраций. Это примеры скалярных полей. Здесь будут рассматриваться векторные силовые поля. В каждой точке пространства при этом определен вектор силы, действующей на соответствующий заряд и зависящий в общем случае от положения точки относительно источника поля. Речь пойдет о неизменных во времени (стационарных) внешних силовых полях, когда источник поля располагается вне системы и наличие системы не влияет на величину поля. Силовое поле называют потенциальным, если сила в каждой точке пространства может быть выражена через градиент некоторой скалярной функции координат — потенциала поля. Так, гравитационное поле Земли имеет потенциал  [c.153]


Линейная протяженность очага концентрации и относительный градиент напряжений  [c.267]

Другими словами, градиент кинетической энергии по вектору уд скорости точки А равен количеству движения твердого тела, а градиент кинетической энергии по вектору ш угловой скорости равен кинетическому моменту тела относительно точки А.  [c.447]

Сила, обусловленная градиентом давления, действует в направлении с севера на юг перпендикулярно к изобарам. Благодаря вращению Земли поток с севера на юг приобретает относительно вращающейся Земли составляющую в направлении с востока на запад. Эту задачу можно сразу понять, сопоставив ее с данным выше анализом движения маятника Фуко.  [c.109]

На рис. XII.15 представлены результаты травер-сирования отсеков в сечениях 2—2 и 4—4. Градиенты относительного полного давления р и относительной выходной энергии h-ai = /Zbi//ioi вдоль радиуса за первой ступенью отсека II значительно меньше, чем в отсеке I. Так же, как и в одноступен-  [c.215]

Заменяя градиент относительных концентраций dgjdy через градиент парциальных давлений dpjdy, получим  [c.558]

При совместном падении группы частиц (стесненное падение) гидродинамические условия обтекания их жидкостью иные, чем при свободном падении. При стесненном падении встречные потоки жидкости, обтекающие частицы, движутся в промежутках между частицами. Сужение сечений потоков увеличивает градиент относительной скорости жидкости, что в свою очередь увеличивает Касательные напряжения, действующие на поверхности частиц. Кроме того, повышается разрежение в вихревых зонах за частицами вследствие увеличения скоростей потоков в промежутках между частицами следующего ряда, хотя размеры зон несколько уменьшаются. Это приводит к увеличению перепада давления между передней и задней сторонами частицы. Указанные причины вызывают повышение гидродинамического сопротивления частиц и потому при действии одной и той же активной силы (например, силы тяжести) скорость частиц при совместйом падении будет меньше скорости их свободного падения.. Чем меньше расстояние между частицами, т. е. чем больше их объемная концентрация, тем меньше будет скорость стесненного падения.  [c.156]

Следует заметить, что градиент деформации F для любого заданного момента т зависит от момента времени, который рассматривается как момент наблюдения. Далее мы будем называть такие тензоры относительными тензорами. При рассмотрении относительных тензоров иногда желательно выбрать момент отсче-  [c.91]

При такой схеме подвода потока к коллектору можно было заранее ожидать неравномерное распределение расходов газа по отдельным ответвлениям и неравномерное распределение скоростей по сечению каждого ответвления, особенно первых. Действительно, при повороте потока в колене 1 поток, отрываясь от внутренней стсики, не может успеть на сравнительно коротком прямом участке (ИЬ к. 1,5) за ним полностью выравняться по высоте, и профиль скорости должен получиться с минимальными значениями вверху и максимальными внизу. Последнее должно привести к тому, что через первые ответвления пройдет меньшее количество газа, чем через последние, а градиент скорости по высоте коллектора при входе в боковые ответвления еще больше усилится вследствие поворота потока. Так как наибольшее значение этого градиента должно быть со стороны отрывной зоны, т. е. у верхней стенки коллектора, соответственно максимальная неравномерность потока получится в первом ответвлении. Приведенные в табл. 9.9 данные полностью подтверждают описанное распределение относительных расходов д = <7/90р и скоростей ш (где ср — средний по всем ответвлениям расход газа через одно ответвление).  [c.250]

Метод сопряженных градиентов. В градиентных методах для поиска экстремума использовались свойства ортогональности векторов. В методе сопряженных градиентов оптимум целевой функции ищется на ос-fiOBe свойств орготональности приращений вектора градиентов. Для этой цели наряду с градиентом используют матрицу Гессе Г критерия оптимальности. С помощью матрицы Г удается выбрать направление поиска, наиболее полно учитывающее особенности критерия оптимальности. Напомним, что векторы А и В называют сопряженными относительно симметричной и положительно определенной матрицы Г, если скалярное произведение векторов А и ГБ равно нулю, т. е. <А, ГВ > =0. Направление поиска Р +1 на й+1-м шаге определяется как  [c.287]

В прецизионных измерениях спектральной яркости необходимо обеспечивать определенное положение и размер наблюдаемой площадки на ленте. Это вызвано тем, что избежать градиентов температуры и упоминавшихся выше вариаций излучательной способности от зерна к зерну невозможно. И хотя подробности распределения температуры вдоль ленты зависят от ее размера, теплопроводности, электропроводности и полной излучательной способности, результирующее распределение вблизи центра не должно сильно отличаться от параболического. Такие отличия, как это наблюдалось, возникают из-за вариаций толщины ленты и существенны для ламп с широкой и соответственно тонкой лентой. В газонаполненной лампе с вертикально расположенной лентой максимум смещается вверх от центра вследствие конвекции. В вакуумной лампе к заметной асимметрии распределения относительно центра приводит эффект Томсона. Наиболее высокая температура в вакуумной лампе всегда близка к отметке на краю ленты. На рис. 7.23 показаны градиенты температуры, измеренные при двух температурах на ленте лампы, конструкция которой приведена на рис. 7.19. Температурные градиенты на лентах газонаполненных ламп несколько больше, чем градиенты, показанные на рис. 7.23, и имеют асимметричный вид из-за конвекционных потоков. Конвекционные потоки существенно зависят от формы стеклянной оболочки и ее ориентации по отношению к вертикали. При некоторых ориентациях яркостная температура начинает испытывать весьма значительные циклические вариации с периодом порядка 10 с и амплитудой в несколько градусов. Перед градуи-  [c.359]


Эти критерии получены на основе анализа дифференциальных уравнений движения закрученного потока в трубе в проекциях на оси хкув приближении погра ничного слоя. Использование этого приближения для течений с интенсивным радиальным градиентом давления требует дополнительного исследования и тщательного обоснования, отсутствующего в цитируемых публикациях. Достаточность этих критериев для описания течения закрученных потоков в теплообменных аппаратах, циклонах, горелоч-ных устройствах с предварительной закруткой потока некоторых классов не обеспечивается, когда речь идет об интенсивно закрученных потоках, которые наблюдаются в камерах энергоразделения вихревых труб [15, 62, 196]. Это связано с неоднозначностью обеспечения подобия режимов течения в них при равенстве приведенных выше критериев. Вопрос о подобии потоков в камерах энергоразделения в вихревых трубах интересует исследователей достаточно давно [15, 18, 29, 40, 47, 62, 70, 204]. Пытаясь объяснить наблюдаемые эффекты по энергоразделению турбулентным противоточным теплообменом, А.И. Гуляев предположил, что в геометрически подобных вихревых трубах режимы подобны тогда, когда одинаковы такие критерии, как показатель изоэнтро-пы к= С /С , число Рейнольдса Re-= Kp i/v, число Прандтля Рг = v/a, число Маха М = и безразмерный относительный  [c.10]

На рис. 2.24 показана схема конструкции вихревой трубы с дополнительным потоком, а на рис. 2.25-2.27 — результаты продувок в виде зависимостей безразмерной относительной эффективности 0 и адиабатного КПД процесса энергоразаеления от режимных и геометрических параметров. Для увеличения радиального градиента давления и повышения эффективности процесса энергоразделения дроссельное устройство было выполнено в виде щелевого диффузора. При прочих равных условиях определяет распределение давления внутри камеры энергоразделения. Опыты показали, что относительная величина этой щели, обеспечивающая максимальную холодопроизводительность вихревой трубы, близка к 0,01. Проверка этой рекомендации при различных давлениях подтвердила этот вывод.  [c.85]

Микро- и макроструктур закрученного потока представлякгг особый интерес для понимания физического механизма процессов течения и тепломассообмена. На структуру турбулентного течения существенно влияют особенности радиального распределения осредненных параметров и кривизна обтекаемой газом поверхности. При этом поле турбулентных пульсаций при закрутке всегда трехмерно и имеет особенности, отличающие его от турбулентных характеристик осевых течений [16, 27, 155, 156]. Одно из основных и характерных отличий состоит в том, что в камере энергоразделения вихревой трубы наблюдаются значительные фадиенты осевой составляющей скорости, характеризующие сдвиговые течения. Эти градиенты наиболее велики на границе разделения вихря в области максимальных значений по сечению окружной составляющей вектора скорости. Приосевой вихрь можно рассматривать как осесимметричную струю, протекающую относительно потока с несколько отличной плотностью, и естественно ожидать при этом появления эффектов, наблюдаемых в слоях смешения струй [137, 216, 233], прежде всего, когерентных вихревых структур с детерминированной интенсивностью и динамикой распространения. Экспериментальное исследование турбулентной структуры потоков в вихревой трубе имеет свои специфические сложности, связанные с существенной трехмерностью потока и малыми габаритными размерами объекта исследования, что предъявляет достаточно жесткие требования к экспериментальной аппаратуре. В некоторых случаях перечисленные причины делают невозможным применение традиционных  [c.98]

Этот факт имеет достаточно прозрачное физическое объяснение. При неизменных геометрии трубы и степени расширения в ней увеличение ц достигается прикрьггием дросселя, т. е. уменьшением площади проходного сечения для периферийных масс газа, покидающих камеру энергоразделения в виде подогретого потока. Это равносильно увеличению гидравлического сопротивления у квазипотенциального вихря, сопровождающегося ростом степени его раскрутки, увеличением осевого градиента давления, вызывающего рост скорости приосевых масс газа и увеличение расхода охлажденного потока. Наибольшее значение осевая составляющая скорости имеет в сечениях, примыкающих к диафрагме, что соответствует опытным данным [116, 184, 269] и положениям усовершенствованной модели гипотезы взаимодействия вихрей. На критических режимах работы вихревой трубы при сравнительно больших относительных долях охлажденного потока 0,6 < р < 0,8 течение в узком сечении канала отвода охлажденных в трубе масс имеет критическое значение. Осевая составляющая вектора полной скорости (см. рис. 3.2,а), хотя и меньше окружной, но все же соизмерима с ней, поэтому пренебрегать ею, как это принималось в физических гипотезах на ранних этапах развития теоретического объяснения эффекта Ранка, недопустимо. Сопоставление профилей осевой составляющей скорости в различных сечениях камеры энергоразделения (см. рис. 3.2,6) показывает, что их уровень для классической разделительной противоточной вихревой трубы несколько выше для приосевых масс газа. Максимальное превышение по модулю осевой составляющей скорости составляет примерно четырехкратную величину.  [c.105]

Анализ результатов траверсирования различными зондами объема камеры энергоразделения позволяет выделить следующие характерные особенности распределения параметров в вихревой трубе с дополнительным потоком. Как и в обычных разделительных вихревых трубах, работающих при ц 1, четко различаются два вихря — периферийный и приосевой, перемещающиеся в противоположных направлениях вдоль оси. Первый — от соплового сечения к дросселю, второй — в обратном направлении. Распределение параметров осредненного потока существенно неравномерно как по сечению, згак и по длине камеры энергоразделения. Радиальные градиенты статического давления и полной температуры уменьшаются от соплового сечения к дросселю, а их максимальные значения наблюдаются в сопловом сечении. Распределение тангенциальных и осевых компонент скорости качественно подобны для различных сечений, однако, количественно вдоль трубы они претерпевают изменения. Поверхность разделения вихрей в большей части вихревой зоны близка к цилиндрической, о чем свидетельствуют пересечения осевых скоростей для различных сечений примерно в одной точке оси абцисс Т= 0,8 (см. рис. 3.9 и 3.10). Это хорошо согласуется с результатами исследований вихревых труб с диффузорной камерой энер-горазцеления, работающих при ц < 0,8, и позволяет в составлении аналитических методик расчета вихревых труб с дополнительным потоком вводить допущение dr /dz = О, а радиус разделения вихрей Tj для этого класса труб считать равным примерно 0,8. Как и у обычных труб, интенсивность закрутки периферийного потока вдоль трубы снижается -> 0), а возвратное при-осевое течение формируется в основном из вводимых дополнительно масс газа, скорость которых на выходе из трубки подвода дополнительного потока имеет осевое направление. По мере продвижения к отверстию диафрагмы приосевые массы в процессе турбулентного энергомассообмена с периферийным вихрем приобретают окружную составляющую скорости. Затухание закрутки периферийных слоев происходит тем интенсивнее, чем больше относительная доля охлажденного потока. Опыты показывают, что прй оптимальном по энергетической эффективности  [c.112]

В системах газ—жидкость может также возникать дополнительный поток вещества вдоль межфазной границы, обусловленный локальными изменениями поверхностного натяжения во время процесса массопероноса (эффект Марангони). Изменения поверхностного натяжения могут быть вызваны локальными изменениями любой величины, влияющей на поверхностное натяжение, например концентрации вещества на межфазной границе, температуры или электрических величин. Характер движения вещества по межфазной поверхности различен в случае движущихся друг относительно друга или покоящихся (невозмущенных) фаз. В последнем случае могут происходить слабые пульсации коэффициента поверхностного натяжения. Тогда, если движущая сила массопереноса и градиент поверхностного натяжения малы, а естественная конвекция отсутствует, происходит медленный дрейф элементов жидкой фазы с растворенным в ней целевым компонентом вдоль границы раздела, вызванный последовательными сжатиями и растяжениями поверхности раздела фаз. При этом наблюдают образование пространственных долгоживущих ячеек с различной концентрацией целевого компонента. Такой вид поверхностной конвекции часто называют ячеистым поверхностным движением.  [c.8]


Второй ч.лен правой части уравнения (2.37) обусловлен градиентом давления в жидкости, окруя аю1цей твердую частицу. Третий член вырая ает силу, ускоряющую присоединенную массу частицы относительно жидкости. Четвертый член учитывает, согласно Вассе, отклонение течения от установившегося состояния.  [c.48]

Рассмотрим сферу радиусом г в потоке множества частиц с поперечным градиентом скорости duldy, с концентрацией п и массой т и примем скорость и равной нулю в центральной плоскости сферы. Относительная скорость, как показано на фиг. 5.11, равна  [c.219]

Установить общий вид тензора сг. ., можно, исходя из следующих соображений. Процессы внутренне10 трения в жидкости возникают только в тех случаях, когда различные участки жидкости движутся с различной скоростью, так что имеет место движение частей жидкости друг относительно друга. Поэтому должно зависеть от производных от скорости по координатам. Если градиенты скорости не очень велики, то можно считать, что об с-ловленный вязкостью перенос импульса зависит только от первых производных скорости. Самую зависимость от производных dvifdxk можно в том же приближении считать линейной. Не зависящие от dvijdxk члены должны отсутствовать в выражении для сг- , поскольку а. должны обратиться в нуль при  [c.72]


Смотреть страницы где упоминается термин Градиент относительный : [c.211]    [c.406]    [c.458]    [c.159]    [c.23]    [c.35]    [c.394]    [c.347]    [c.95]   
Сопротивление материалов (1999) -- [ c.492 ]

Сопротивление материалов усталостному и хрупкому разрушению (1975) -- [ c.136 , c.144 ]

Расчеты деталей машин и конструкций на прочность и долговечность (1985) -- [ c.144 , c.160 ]



ПОИСК



Градиент

Градиент напряжений относительный

Консервативность закона теплообмена относительно градиента давления

Линейная протяженность очага концентрации и относительный градиент напряжений

Сила вследствие градиента давления массу частицы относительно жидкости



© 2025 Mash-xxl.info Реклама на сайте