Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Уравнение кинетической энергии и общее уравнение динамики

Уравнение энергии выводится путем составления энергетического баланса для элементарного объема, отсекаемого в обогреваемом канале двумя близко расположенными сечениями. Изменение энергии вдоль координаты принимается линейным. Основные составляющие энергетического баланса элементарного объема выявляются при детализации притоков и стоков тепла. Приток обусловлен конвективным переносом тепла вместе с рабочим телом, обогревом (в общем случае переменным по длине и времени), теплопроводностью рабочего тела и металлической стенки (продольная передача тепла). Тепловая энергия расходуется (сток тепла) на нагревание рабочего тела в объеме, передачу тепла движущимся рабочим телом, передачу тепла за счет теплопроводности рабочего тела и металла и на увеличение кинетической энергии потока. Составляющие притока и стока энергии неравноценны. Приток и сток энергии за счет теплопроводности рабочего тела и металлической стенки трубы в данной задаче ничтожны" по сравнению с количеством тепла, вносимым движущимся потоком и внешним обогревом. Это легко показать, например, путем проведения статических расчетов. Очевидно также, что переход тепловой энергии в кинетическую энергию потока, а также расходование кинетической энергии на тепловые потери (в результате трения) мало. При исследовании динамики промышленных теплообменников упомянутыми составляющими можно пренебречь.  [c.60]


Сопоставление пяти методов решения этой задачи показывает, что наиболее эффективными являются первые два (теорема об изменении кинетической энергии в дифференциальной форме и уравнения Лагранжа). С помощью общего уравнения динамики также (но несколько сложнее) составляется лишь одно уравнение. Однако при этом приходится использовать формальный прием введения сил инерции. Применение метода кинетостатики и дифференциальных уравнений плоского движения приводит к составлению не одного, а двух уравнений и поэтому является более громоздким. При этом метод кинетостатики более сложен, ибо дополнительно связан с введением сил инерции.  [c.570]

Исключая из уравнения (а) зависимые величины примем во внимание, что кинетическая и потенциальная энергии не зависят от координат как было обусловлено выше. Тогда общее уравнение динамики можно представить в следующей форме  [c.163]

Заметим, что при применении уравнений Лагранжа и других общих уравнений динамики, в которых фигурирует кинетическая энергия системы, не возникает необходимость определения приведенных масс и моментов инерции. Приведение масс и моментов инерции усложняется, если необходимо учитывать деформации звеньев. При этом дифференциальные уравнения движения приводимых системы оказываются существенно нелинейными и трудно разрешимыми.  [c.100]

Исходя из своего общего уравнения динамики, Лагранж вывел дифференциальные уравнения движения в двух видах, соответствующих двум видам уравнений статики. Это знаменитые уравнения движения Лагранжа первого и второго рода. Уравнения движения второго рода замечательны тем, что для систем, при движении которых не изменяется их полная механическая энергия (консервативные системы), эти уравнения можно составить, зная общее выражение только двух величин кинетической энергии системы и ее потенциальной энергии. Число этих уравнений минимально, оно равно числу степеней свободы системы. Вместе с тем уравнения Лагранжа весьма общи их можно использовать для разных физических систем, если состояние таких систем характеризуется значениями их кинетической и потенциальной энергии. Кроме того, уравнения движения в форме Лагранжа второго рода имеют определенную структуру с математической точки зрения. Поэтому задача их решения (интегрирования) в общем виде является достаточно определенной, чтобы исследовать ее чисто математически. Знаменитый физик Максвелл имел все основания писать в своем Трактате об электричестве и магнетизме , касаясь значения Аналитической механики Лагранжа  [c.204]


Напомним, что виртуальные перемещения согласованы со связями в том смысле, что являются мысленными перемещениями материальных точек из заданного при фиксированном времени действительного положения при неизменных действительных скоростях. Следовательно, при операциях, указанных в общем уравнении динамики, значения кинетической и потенциальной энергии системы, а также силы (полагаемые зависящими только от состояния) остаются неизменными.  [c.28]

Закон количеств движения дает одно векторное уравнение, т. е. три скалярных уравнения столько же дает закон кинетических моментов наконец, закон изменения кинетической энергии дает одно скалярное уравнение. Таким образом, все три основных закона позволяют написать в общей сложности семь дифференциальных уравнений. Этих семи уравнений в общем случае может оказаться недостаточно для нахождения движения каждой точки материальной системы кроме того — и это главное — в эти семь уравнений могут входить и реакции связей например, в законах количеств движения и кинетических моментов автоматически исключены внутренние силы, но те реакции связей, которые являются внешними силами, в эти уравнения войдут таким образом, хотя три основных закона динамики имеют определенный физический смысл, тем не менее они не дают возможности решить общую задачу динамики несвободной материальной системы.  [c.308]

Удобство применения общих теорем динамики заключается в возможности упростить интегрирование дифференциальных уравнений движения системы. Однако эти общие теоремы могут (как показано выше) применяться только в некоторых случаях. Удобно и то, что в формулировки общих теорем динамики не входят внутренние силы, определение которых обычно связано со значительными трудностями (это замечание о внутренних силах в равной мере относится к дифференциальному уравнению вращения твердого тела вокруг неподвижной оси, дифференциальным уравнениям плоского движения твердого тела и динамическим уравнениям Эйлера). Лишь в формулировку теоремы об изменении кинетической энергии системы материальных точек входят не только внешние, но и внутренние силы (в частном случае неизменяемой материальной системы, например абсолютно твердого тела, и в этой теореме фигурируют только внешние силы).  [c.544]

Теорема об изменении кинетической энергии при относительном движении. Поскольку уравнение относительного движения (5) отличается от уравнения (2) только наличием в правой части дополнительных слагаемых и то, очевидно, все общие теоремы динамики точки, полученные в 33 как следствия уравнения (2), имеют место и в относительном движении, если только к действующим на точку силам взаимодействия с другими телами прибавить переносную и кориолисову силы инерции.  [c.441]

Следует, однако, отметить, что этот порядок решения второй задачи динамики механической системы обычно не применяется, так как он слишком сложен и почти всегда связан с непреодолимыми математическими трудностями. Кроме того, в большинстве случаев при решении динамических задач бывает достаточно знать некоторые суммарные характеристики движения механической системы в целом, а не движение каждой из ее точек в отдельности. Эти суммарные характеристики движения механической системы определяются с помощью общих теорем динамики механической системы, являющихся следствиями уравнений (4). К числу этих теорем относятся теорема об изменении количества движения, теорема об изменении кинетического момента и теорема об изменении кинетической энергии.  [c.570]

Общие теоремы динамики позволяют нам, не исследуя движения каждой точки механической системы, находить общие динамические характеристики движения системы. Эти теоремы устанавливают связь между данными динамическими характеристиками (количеством движения, кинетическим моментом, кинетической энергией) и действующими на систему силами. Применение теорем избавляет от необходимости каждый раз при непосредственном использовании дифференциальных уравнений движения системы точек производить операции суммирования и интегрирования, которые уже были выполнены при выводе данных теорем. При некоторых условиях для действующих на систему сил теоремы позволяют просто получить первые интегралы, т. е. соотношения, в которые не входят производные второго порядка от координат по времени.  [c.172]


Применение уравнений (16.10) при исследовании динамики механизмов с переменными массами звеньев крайне затруднительно вследствие сложности выражения (16.14) для дополнительного члена Di. Кроме того, при вычислении кинетической энергии Т надо иметь ввиду, что массы звеньев и отдельных материальных частиц зависят в общем случае от времени, обобщенных координат qi и обобщенных скоростей qt, что усложняет вычисление частных и полных производных. Поэтому для задач теории механизмов и машин более удобным является другой вид уравнений Лагранжа второго рода, который получается на основании принципа затвердевания.  [c.302]

Слол ность таких задач объясняется тем, что наряду с действительным изменением масс в системе изменяется приведенная масса, которая определяется из равенства кинетических энергий. Приведенную массу поэтому, при составлении уравнения движения механизма, можно подставлять лишь в выражение для кинетической энергии, которое входит в общие уравнения динамики. Такими уравнениями являются уравнение кинетической энергии и уравнение Лагранжа П рода, которыми и следует пользоваться в динамике механизмов. Однако в широко известных работах по динамике переменных масс предпочтение чаще отдается уравнению количества движения или уравнению моментов количества движения.  [c.12]

Общие теоремы динамики системы материальных точек теоремы количеств движения и моментов количеств движения, а также теорема об изменении кинетической энергии имеют широкое применение при изучении движений сплошных сред и, в частности, жидкостей и газов. Они были уже применены в предыдущих параграфах при выводе основных уравнений механики сплошных сред, причем использовалось лагранжево представление движения. Остановимся на некотором своеобразии применения этих теорем, связанном с эйлеровым представлением движения.  [c.75]

Уравнения типа (8) и (9) встречаются в различных задачах обыкновенной динамики, например, когда вопрос касается гироскопов, где координаты х, абсолютные значения которых не влияют на кинетическую или потенциальную энергию системы, суть угловые координаты гироскопов относительно их рам. Общая теория таких систем была разобрана Раусом Томсоном и Тэтом и другими авторами.  [c.242]

Для составления дифференциальных уравнений движения твердого тела при различных случаях его движения нам придется, как уже говорилось, пользоваться общими теоремами динамики системы. Поэтому в этом параграфе приводятся выражения для количества движения, момента количеств движения и кинетической энергии твердого тела для различных случаев его движения.  [c.294]

Построение общей теории движения тел переменной массы можно выполнить при помощи основных теорем механики теоремы об изменении количества движения, теоремы об изменении кинетического момента и теоремы об изменении кинетической энергии. Такой путь изучения движения тел переменной массы является наиболее простым и естественным. К формулировкам основных теорем механики для тел, масса которых изменяется с течением времени, можно идти различными путями. Мы будем следовать методу, широко применяемому в механике тел постоянной массы, рассматривая тело переменной массы как совокупность точек переменной массы, движение которых определяется уравнением Мещерского. Зная уравнения движения точки переменной массы и рассматривая тело как совокупность точек, можно получить простые формулы, выражающие основные теоремы динамики для тела переменной массы. Ограничимся в этой главе рассмотрением таких тел переменной массы, для которых излучение (отбрасывание) частиц происходит с некоторой части поверхности тела, причем частицы, не имеющие относительной скорости по отношению к системе осей координат, связанной с телом, считаются принадлежащими телу, а частицы, имеющие относительную скорость, телу не принадлежат и никакого влияния на его движение не оказывают. Реактивные силы и моменты понимаются во всем дальнейшем как результат контактного взаимодействия отбрасываемых частиц и тела в момент их отделения от основного тела.  [c.89]

Мы видели, что дифференциальное уравнение (84) относительного движения материальной точки имеет тот же вид, что и дифференциальное уравнение движения точки относительно неподвижной системы отсчета различие между этими уравнениями состоит лишь в том, что в уравнение относительного движения, кроме заданных сил и реакций связей, входят еще переносная и кориолисова силы инерции. С другой стороны, в главе 21 мы видели, что все общие теоремы динамики точки (теорема о количестве движения, теорема о моменте количества движения, теорема о кинетической энергии) являются следствием основного дифференциального уравнения динамики точки, выражающего второй закон Ньютона. Отсюда следует, что все эти обпще теоремы применимы и к относительному движению точки, но понятно, что, применяя эти теоремы к относительному движению, мы должны принять во внимание переносную и кориолисову силы инерции. В частности, при решении задач, относящихся к относительному движению точки, нередко приходится пользоваться теоремой о кинетической энергии. Нри составлении уравнения, выражающего эту теорему в относительном движении, необходимо принять во внимание работу переносной и кориолисовой сил инерции на относительном перемещении точки. Но так как ускорение Кориолиса Н7д всегда перпендикулярно к относительной скорости v , то следовательно, работа кориолисовой силы инерции в относительном движении равна нулю, и эта сила в уравнение теоремы о кинетической энергии не войдет. Поэтому это уравнение в дифференциальной форме будет иметь следующий вид  [c.456]


Динамика системы материальных точек сначала излагается для случая, когда движение стеснено произвольными дифференциальными связями. Из принципа Даламбера-Лагранжа (общее уравнение динамики) с использованием свойств структуры виртуальных перемещений [68] выводятся общие теоремы динамики об изменении кинетической энергии (живой силы), кинетического момента (момента количеств движения), количества движения. Изучается динамика системы переменного состава [1]. На основе принципа Гаусса наи-меньщего принуждения выводятся уравнения Аппеля в квазикоординатах. Получены также уравнения Воронца и, как их следствие, уравнения Чаплыгина. Установлено, что воздействие неголономных связей включает реакции, имеющие гироскопическую природу [44].  [c.12]

Динамика твердого тела изучается на основе общих теорем об изменении кинетической энергии, кинетического момента и количества движения, а также с помощью основных понятий геометрии масс. Показывается, что аппарат динамики системы материальных точек применим для описания движения твердого тела и систем твердых тел. Проясняется вычислительная экономность использования уравнений Эйлера. Традиционно анализируются случаи Эйлера-Пуансо, Лагранжа-Пуассона, Ковгияевской [24]. В качест)зе примера методики по.чучения частных случаев интегрируемости приводятся случаи Гесса и Бобылева-Стеклова [6]. С целью демонстрации приложения развитых методов к практике даются основы элементарной теории гироскопов [14, 41], достаточные для качественного анализа действия гироскопических приборов.  [c.12]

Из сравнения решений данной задачи с уравнениями Лагранжа и с общим уравнением динамики следует, что метод Лагранжа проще. В ходе его применения определялись скорости точек системы (для кинетической энергии (2)). В случае же общего у йвнения динамики пришлось находить ускорения этих точек (для сил инерции), что значительно усложнило решение задачи. Заметим, что составление системы дифференциальных уравнений (5) и (6) с помощью уравнений Лагранжа не потребовало каких-либо догадок или искусственных приемов решения.  [c.561]

Но такой метод решения для большинства практических задач неприемлем из-за математической сложности. Трудности возникают также из-за того, что ни внутренние силы, ни реакции связей, как правило, заранее неизвестны. Однако в большинстве задач не требуется определять движение каждой точви системы, а достаточно найти параметры, характеризующие движение системы в целом. Эти суммарные характеристики движения механической системы определяются с помощью общих теорем динамики, являющихся следствием дифференциальных уравнений движения системы (9.1). К числу этих теорем относятся теорема об изменении количества движения, теорема об изменении кинетического момента и теорема об изменении кинетической энергии. Эти теоремы применимы как для точки, так и для системы материальных точек.  [c.145]

Предварительные замечания, В обшем курсе динамики системы изложены так называемые законы динамики, т. е. некоторые об-и1ие теоремы, указывающие, как изменяются скорости частиц системы в зависимости от данных активных сил и от реакций связей. Это были закон изменения количества движения, закон изменения кинетического момента и закон изменения кинетической энеогии. Каждая такая теорема в частном предположении об активных силах и реакциях системы может непосредственно привести к интегралам уравнений движения к закону сохранения количества движения (или сохранения движения центра масс), к закону сохранения кинетического момента, к закону сохранения энергии. Но зато, вообще говоря, ни один из названных законов не в состоянии заменить собой всей совокупности уравнений движения системы. Другими словчми, движение системы в общем случае не может быть, вполне охарактеризовано одним каким-либо из упомянутых законов.  [c.347]

Кроме того, очевидно, что в невязкой жидкости вращение сферы не оказывает на окружающую жидкость никакого влияния следовательно, момент инерции сферы остается неизменным. Это наводит на мысль, что (если пренебречь влиянием сил тяжести) сфера в такой жидкости динамически эквивалентна более тяжелой сфере в вакууме, кажущаяся масса т = m + т которой есть сумма массы сферы т и присоединенной массы т, равной половине массы вытесненной воды, но момент инерции которой не изменяется. Это будет строго доказано в 109, где мы покажем, что все динамические характеристики всякого безвихревого несжимаемого течения можно вывести из выражения для его кинетической энергии при помощи общих уравнений ла-гранжевой динамики.  [c.197]

В связи с этим следует обратить внимание на различие между уравнениехм (115) и уравнениями, выражающими общие теоремы динамики системы, рассмотренные в предыдущих параграфах. Как мы видели выше, в уравнения, выражающие теоремы о количестве движения, о движении центра масс и о кинетическом моменте системы, внутренние силы не входят, но реакции связей, если они относятся к внешним силам, из этих уравнений не исключаются в уравнение же, выражающее теорему о кинетической энергии системы, внутренние силы войдут, так как работа внутренних сил вообще не равна нулю. Чтобы убедиться в этом, достаточно рассмотреть следующий простой пример пусть имеем систему, состоящую из двух материальных точек, притягивающихся по какому угодно закону (например, по закону Ньютона). Силы взаимного притяжения этих точек являются для рассматриваемой системы внутренними силами эти силы равны по модулю и направлены по прямой, соединяющей данные точки, в противоположные стороны. Ясно, что если под действием этих сил точки будут сближаться, то работа каждой силы будет положительна и, следовательно, сумма работ внутренних сил не будет равна нулю, а будет больше нуля.  [c.489]

О некоторых методах моделирования турбулентности. Помимо статистического подхода к моделированию турбулентности в настоящее время все более широкое применение находит феноменологический (полуэмпириче-ский) подход и методы прямого численного моделирования турбулентности на основе решения специальных кинетических уравнений или нестационарной системы трехмерных уравнений Навье-Стокса, хотя в силу стохастичности данного явления в реальности удается получать лишь осредненные характеристики движения. Это позволяет, тем не менее, иногда проследить не только эволюцию образований различных пространственных структур с течением времени, но также изучать общую динамику и природу развития турбулентности. Например, результаты численного моделирования явления перебросов в гидродинамической системе (сконструированной в виде многоярусной модели зацепления простейших элементов - триплетов) иллюстрируют каскадный процесс передачи энергии в развитом турбулентном потоке, соответствующий известному закону Колмогорова-Обухова Гледзер и др., 1961) и подкрепляют представления об общих свойствах в поведении динамических систем. Интересно также отметить, что исследование процесса стохастизации динамических систем и сценариев перехода к хаосу при численном моделировании турбулентности служит аналогом решения некорректных задач с использованием оператора осреднения и параметрического расширения Тихонов и Арсенин, 1986). При таком подходе упорядоченная структура турбулентного течения, которая определяется как аттрактор асимптотически устойчивого решения для осредненных величин, представляет собой его регуляризованное описание Белоцерковский, 1997). Следует однако заметить, что использование методов прямого численного моделирования турбулентности для решения практически важных задач (особенно задач, связанных с расчетами турбулентного тепло-и массопереноса в многокомпонентных химически активных смесях) часто затруднительно или является слишком громоздким. Поэтому подобные задачи целесообразнее решать с помощью более простых, полуэмпирических теорий.  [c.16]



Смотреть страницы где упоминается термин Уравнение кинетической энергии и общее уравнение динамики : [c.47]   
Смотреть главы в:

Теория механизмов и машин  -> Уравнение кинетической энергии и общее уравнение динамики



ПОИСК



70 - Уравнение динамики

Динамика общее уравнение

Кинетическая энергия—см. Энергия

Кинетические уравнения

Общая динамика

Общее кинетическое уравнение

Общее уравнение динамики и закон изменения кинетической энергии

Общее уравнение энергии

Общие уравнения

Уравнение динамики общее

Уравнение энергии

Уравнения кинетической энергии

Энергия кинетическая

Энергия кинетическая (см. Кинетическая

Энергия кинетическая (см. Кинетическая энергия)



© 2025 Mash-xxl.info Реклама на сайте