Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Интегральные уравнения основных плоских задач

При исследовании напряженно-деформированного состояния тел с трещинами широкое применение нашел метод сингулярных интегральных уравнений. Он особенно удобен и эффективен при решении плоских задач теории упругости для тел сложной геометрии, содержаш,их включения, отверстия и трещины произвольной формы. Впервые [И, 137, 181] сингулярные интегральные уравнения использовались при исследовании распределения напряжений около прямолинейной трещины (или полосы пластичности) в некоторых классических областях (полуплоскость, полоса, бесконечная плоскость с круговым отверстием). Система произвольно ориентированных прямолинейных трещин изучалась в работах [21, 22, 70]. Рассматривался также случай криволинейных трещин в бесконечной плоскости [16, 40, 74, 92, 117]. В работах [94—96] основные граничные задачи для многосвязной области, содержащей изолированные криволинейные разрезы и отверстия произвольной формы, сведены к системе сингулярных интегральных уравнений по замкнутым (контуры отверстий и внешняя граница) и разомкнутым (разрезы) контурам. Эти результаты обобщены на случай, когда разрезы выходят на границу тела, а также соединяют отверстия между собой и (или) с внешней границей [97]. К настоящему времени появилось большое количество работ, в которых методом сингулярных интегральных уравнений изучаются плоские задачи теории трещин. Обзор этих исследований имеется в работах [5, 32, 45, 54, 70, 95, 100].  [c.5]


Сингулярные интегральные уравнения основных задач об изгибе бесконечной пластины с криволинейными разрезами можно построить аналогично соответствующим плоским задачам. Нил<е предложен иной, более общий прием, в котором используется фундаментальное решение (функция Грина) бигармонического уравнения. Такой подход в дальнейшем будет применен при решении задач об-упругом равновесии пологих оболочек с трещинами.  [c.249]

В настоящей книге применение комплексного переменного к плоской задаче ограничено примерами решения наиболее простых краевых задач (первой и второй). Смешанные краевые задачи, решение которых требует применения средств теории линейного сопряжения и сингулярных интегральных уравнений, полно представлены в последних изданиях книги [2], а также в [149, 150] в книге [148] основное место уделено применению интегральных уравнений.  [c.923]

Как видно из изложенного выше, сингулярные интегральные уравнения антиплоских задач теории упругости для многосвязных областей с отверстиями и разрезами строятся аналогично, как и в плоских задачах (см. параграф 2 главы V). В частности, легко могут быть получены интегральные уравнения второй основной задачи, когда на всех контурах известны смещения, а также смешанной задачи, когда на одних контурах (замкнутых или разомкнутых) заданы напряжения, а на других — смеш.ения.  [c.213]

При n — 0 уравнения (IX.Ill) совпадают с интегральными уравнениями первой основной задачи для пластины, находящейся в условиях плоского напряженного состояния или поперечного изгиба. Следующее приближение in — 1, 2) определяется из той же системы уравнений, в которых правые части выражаются через нулевое приближение. Воспользуемся полученными выше результатами для построения асимптотического решения задачи в случаях прямолинейной и дугообразной трещины или кругового отверстия в пологой оболочке двоякой кривизны.  [c.295]

В первой главе изложен математический аппарат, применяемый далее при решении основных граничных задач плоской теории упругости для тел с криволинейными разрезами. Получены сингулярные интегральные уравнения для многосвязных областей с отверстиями и разрезами в общем случае, когда разрезы выходят на границу тела, а также соединяют отверстия между собой и (или) с внешней границей.  [c.3]


В данной главе изложен метод сингулярных интегральных уравнений для решения основных граничных задач плоской теории упругости для многосвязных областей с отверстиями и разрезами произвольной формы при наличии угловых точек на граничных контурах, а также изучено поведение вблизи концов линии интегрирования интеграла типа Коши и некоторых других комплексных интегралов, плотности которых имеют особенности степенного характера.  [c.5]

Основные граничные плоские и антиплоские задачи теории упругости для многосвязной области, содержащей криволинейные разрезы и отверстия произвольной формы, сведены в работах [94—96] к системе сингулярных интегральных уравнений первого рода по замкнутым (контуры отверстий и внешняя граница) и разомкнутым (разрезы) контурам. При этом предполагалось, что контуры разрезов и отверстий не пересекаются между собой (см. параграф 3 данной главы). Краевые трещины рассматривались только в некоторых частных случаях граничного контура (окружность, прямая), когда удается построить модифицированные сингулярные интегральные уравнения, не содержащие искомых функций на этом контуре [70, 95]. В последнее время изучались также задачи в случае произвольной симметричной области с краевой трещиной, находящейся на оси упругой и геометрической симметрии [27, 53, 58, 104] (см. также параграфы 3—5 четвертой главы). Ниже, следуя работе [97], приводятся обобщения указанных выше результатов на общий случай многосвязной области с разрезами и отверстиями, когда разрезы одним или двумя концами могут выходить на внешнюю границу и контуры отверстий. Получены численные решения построенных интегральных уравнений при одноосном растяжении бесконечной плоскости с одним или двумя круговыми отверстиями, на контуры которых выходят радиальные трещины.  [c.33]

Как известно (см. первую главу), основные граничные задачи плоской теории упругости для тел с разрезами сводятся к системе сингулярных интегральных уравнений по замкнутым (контуры отверстий и внешняя граница) и разомкнутым (разрезы) контурам. В некоторых частных случаях граничных контуров 70, 95] (круговая граница, бесконечная прямолинейная граница, система коллинеарных разрезов) возможно понижение порядка этой системы уравнений, что позволяет более эффективно находить ее численное решение. В данной главе (см. также работы 59, 60]) получены модифицированные таким образом сингулярные интегральные уравнения, когда в рассматриваемой области имеется прямолинейная конечная или полубесконечная треш,ина. (Случай конечной прямолинейной треш,ины рассмотрен в работах [58, 104].) Указанный подход, когда граничное условие на прямолинейной треш,ине выполняется тождественно, позволяет не только эффективнее находить численное решение задачи, но и сравнительно просто изучать действие сосредоточенных сил и разрывных нагрузок на берегах трещины, а также рассматривать краевые разрезы. Решение задач для областей с прямолинейной тре-Ш.ИНОЙ представляет особый интерес в механике разрушения (определение /С-тарировочных зависимостей для опытных образцов с трещинами, развитие трещин около концентраторов напряжений).  [c.102]

В начале данной главы получены сингулярные интегральные уравнения первой основной задачи плоской теории упругости для кольцевой пластины с трещинами, ограниченной внутренним круговым и произвольным внешним контурами. В параграфе 3 подробно рассмотрено круговое кольцо с краевыми радиальными трещинами. Ниже, пользуясь этим же приемом, изучим упругое равновесие эллиптической пластины с одной или двумя радиальными трещинами, выходящими на внутреннюю круговую границу, при действии сосредоточенных сил на замкнутых граничных контурах.  [c.200]

Программа расчета жесткости виброизолятора основана на использовании пакета прикладных программ, реализующего метод граничных интегральных уравнений (ГИУ) и предназначенного для решения задач теории упругости. Данная версия программы использует двумерную формулу ГИУ (осесимметричная и плоская задачи). Метод ГИУ является развитием метода потенциалов в синтезе с конечноэлементным подходом. Подробно основные предпосылки теории метода ГИУ приводятся, например, в [27, 28.  [c.52]


Книга знакомит читателя с применением нового метода численного решения задач механики — так называемого метода граничных интегральных уравнений. Этот метод, которому в последние годы уделяется все возрастающее внимание, позволяет эффективно решать при помощи ЭВМ сложные задачи, возникающие в инженерной практике. Он дает возможность понижать размерность задач, что служит основным его преимуществом перед другими численными методами. Применение метода демонстрируется на решении плоских и пространственных задач гидродинамики, теории упругости, пластичности, механики разрушения, механики горных пород, нестационарной теории теплопроводности.  [c.4]

Соответствие между интегральными уравнениями (25) и препятствиями Р не является взаимно однозначным из-за наличия параметра М. Поэтому возникает основной вопрос в каком смысле (если о нем можно говорить) корректно поставлена задача Гельмгольца, рассмотренная в 36 Этот трудный вопрос еще не разрешен полностью даже для плоских течений, имеющих ось симметрии.  [c.97]

В работах [17, 55, 66, 73] приводятся решения некоторых плоских и осесимметричных контактных задач о вдавливании без трения жесткого штампа в двухслойное стареющее вязкоупругое основание. Предполагается, что верхний слой тонкий относительно области контакта, неоднородно-стареющий реологические свойства нижнего слоя описываются уравнениями линейной теории ползучести стареющих материалов слои жестко сцеплены между собой область контакта не изменяется с течением времени. В зависимости от соотношений между модулями упругомгновенных деформаций слоев смешанные задачи сводятся к интегральным уравнениям первого или второго рода, содержащим операторы Фредгольма и Вольтерра. Используемый для их решения аналитический метод (см. 9, гл. 1) позволил построить разложения для основных характеристик контактного взаимодействия при произвольным образом меня-  [c.465]

Плоские задачи. В работах [8,9,16-18] дается постановка плоских контактных задач (см. рис. 1), приводятся системы их разрешающих двумерных интегральных уравнений. Формулируется общая математическая задача для операторного уравнения в абстрактном гильбертовом пространстве, предлагается проекционно-спектральный метод ее решения. Проводится численный анализ ряда конкретных процессов, причем исследуются закономерности как индивидуального, так и совместного влияния основных факторов на характеристики контактного взаимодействия.  [c.551]

Разрешающие системы уравнений на каждом интервале времени, когда число штампов фиксировано, приводятся заменами переменных к единой основной системе двумерных интегральных уравнений плоских контактных задач  [c.552]

Задачи для цилиндрических тел. В статьях [22,23] и монографиях [8,9] исследуются осесимметричные контактные задачи для неоднородных стареющих вязкоупругих цилиндрических тел, наращиваемых системами жестких усиливающих элементов (см. рис. 3 и рис. 4). По своему математическому содержанию они идентичны плоским контактным задачам, рассмотренным ранее (см. также пп. 3-5). Поэтому основное внимание сосредоточено здесь на постановке задач, выводе их разрешающих систем интегральных уравнений и анализе качественных и количественных эффектов, обусловленных процессами ползучести, неоднородного старения и неодновременного присоединения жестких элементов.  [c.555]

Основное интегральное уравнение плоских контактных задач  [c.54]

Поскольку вид интегрального уравнения 4 сохраняется и для рассматриваемого случая, заменой переменных (4.35) его можно привести к основному интегральному уравнению плоских контактных задач главы 2.  [c.133]

В параграфе приводятся основные уравнения теории пластической наследственности, связывающие компоненты тензоров деформации и напряжений, с учетом ползучести и старения материала в случае плоского деформированного состояния тела. Решается задача о равновесии полуплоскости, находящейся в условиях нелинейной ползучести, под действием сосредоточенной силы, приложенной нормально к ее свободной поверхности. Доказывается, что решение плоской контактной задачи нелинейной теории ползучести сводится к совместному решению двух связанных между собой интегральных уравнений. Приводятся решения этих уравнений для случаев симметричного и кососимметричного нагружения контактирующих тел.  [c.221]

Решение основного интегрального уравнения плоской контактной задачи нелинейной теории ползучести  [c.236]

Тогда основное интегральное уравнение (1.59) плоской контактной задачи примет вид  [c.237]

В противоположность трехмерным задачам, теория плоской задачи, разрабатываемая главным образом методами классического анализа (теория аналитических функций, теория интегральных уравнений Фредгольма и, позднее, теория одномерных сингулярных интегральных уравнений), получила широкое развитие и нашла совершенное выражение в классическом труде Н. И. Мусхелишвили Некоторые основные задачи математической теории упругости , первое издание которого вышло в 1933 году.  [c.9]

J О решении основных плоских граничных задач кусочно-неоднородных анизотропных упругих сред методом интегральных уравнений Фредгольма. Труды Грузинского политехи, ин-та, № 2 (100) (1965), 3—11.  [c.639]

Полученные в первой главе сингулярные интегральные уравнения основных граничных задач плоской теории упругости справедливы как для гладких, так и для ломаных и ветвящихся разрезов и кусочно-гладких граничных контуров. Однако в случае упругих областей с угловыми точками свойства интегральных уравнений усложняются, что требует их дополнительного исследования. Если для областей, ограниченных гладкими контурами, с гладкими криволинейными разрезами сингулярные части ядер интегральных уравнений содержат только ядро Коши, то в них также имеются слагаемые с неподвижными особенностями. При этом искомые решения имеют в угловой точке две различные осо-бенности степенного типа, соответствующие симметричному и антисимметричному распределению напряжений относительно бис- сектрисы клиновидной области. Это обстоятельство очень усложняет численное решение интегральных уравнений. Поэтому в численном анализе часто используют приближенные подходы, не учитывающие особенности в угловых точках или же учитывающие только одну особенность высшего порядка (см., например, работы 95, 146, 156]). Обзор исследований по решению задач теории упругости для областей с угловыми точками имеется в работах [47, 75].  [c.60]


Изучая основные плоские задачи для односвязных областей с углами, С. М. Белоносов (1954, 1962) предложил метод их решения, позволяющий дать теоретическое обоснование практического приема приближенного решения, основанного на закруглении углов. Конформное отображение данной области на полуплоскость Re О позволяет для отыскания комплексных потенциалов ф и г ) применить аппарат одностороннего преобразования Лапласа. В результате приемом, аналогичным указанному Н. И. Мусхелишвили (1966, 78, 79), строятся интегральные уравнения довольно простой структуры, применимые в известном смысле к областям с угловыми точками. Если контур L не содержит угловых точек и вообще достаточно гладок, то ядро интегрального уравнения является фредгольмовым, а в общем случае кусочно-гладкого контура оно принадлежит к типу ядер Карлемана.  [c.59]

Периодическая система коллинеарных термоизолированных трещин [197]. Пусть в бесконечной плоскости на оси Ол размещена периодическая система разрезов — I + kd х I + kd (k == О, zizl, 2,. ..), берега которых свободны от нагрузки. Основное температурное поле То (х, у) в сплошном теле без разрезов периодично по координате л с периодом d. Тогда интегральное уравнение плоской стационарной задачи термоупругости для такой области имеет вид  [c.236]

Уравнение (VIIL35) с точностью до обозначений совпадает с интегральным уравнением (1.78) первой основной задачи плоской теории упругости. Поэтому полученные ранее различные аналитические решения уравнения (1.78) могут быть перенесены на уравнение (VIII.35).  [c.253]

Построено интегральное представление комплексной функции напряжений для пологой оболочки через скачки перемен ений, усилий и моментов при переходе через контуры криволинейных разрезов. При этом использованы соответствующие интегральные представления функции напряжений Эри при обобш.енном плоском напряженном состоянии и функции прогиба при изгибе пластины. При удовлетворении граничных условий на разрезах для основных граничных задач получены комплексные интегральные уравнения.  [c.281]

Круговое отверстие. Аналогично, как и в плоской задаче теории упругости (см. главу V), интегральные уравнения (IX. 104) могут быть обобщены на случай замкнутых контуров, что позволяет рассмотреть первую основную задачу для оболочки, ослабленной отверстиями. При аналитическом решении задачи в случае самоурав-новешенной нагрузки на каждом отверстии можно прямо использо-вать уравнения (IX. 104), считая, что L представляет собой совокупность замкнутых контуров.  [c.301]

К настоящему времени решены уже многие плоские задачи о напряженно-деформированном состоянии тел с отверстиями и трещинами, однако в основном они касаются случаев неограниченных областей (плоскость, полуплоскость, полоса). Изучение таких задач было начато Бови [135] и развито затем другими исследователями [И. 29, 30, 45, 65, 70, 95]. Данная глава посвящена решению задач об упругом равновесии конечной многосвязной области с трещинами и отверстиями, среди которых имеется хотя бы одно круговое. При этом, как и в предыдущей главе, понижен порядок исходной системы сингулярных интегральных уравнений при использовании общего аналитического решения первой основной задачи для бесконечной плоскости с круговым отверстием. Указанный подход позволяет более эффективно решать задачи для многосвязных областей различных внешних очертаний, ослабленных трещинами и круговым отверстием. При этом сравнительно легко могут быть рассмотрены случаи действия сосредоточенных или разрывных нагрузок на круговом граничном контуре, а также трещины, выходящие на край указанного отверстия.  [c.183]

В [5, 50] изучается случай, когда область контакта П — незаштрихо-ванный клин угла 2(3 (рис. 1). Основное внимание уделяется выделению особенностей контактных давлений в кончике штампа. Исключаются решения уравнения (1) с бесконечной энергией типа решения В. Л. Рвачева [54] для задачи б при о = тг/4 и плоской подошве штампа. Вводятся полярные координаты г = р соз ф, г = рБшф и новые функции (р, ф) = д(г,, Ф) /( 5 )- При помощи преобразования Меллина получается одномерное интегральное уравнение. Для случая f p, ф) = ( 1 6  [c.185]

В решение плоских контактных задач для упругого клина значительный вклад внес В. ]У[. Александров с соавторами [2, 8]. Ими рассмотрены задачи о плоской деформации бесконечного упругого клина, в одну грань которого без учета сил трения вдавливается плоский, наклонный или параболический жесткий штамп, а на другой грани выполняется одно из следующих условий отсутствие напряжений, скользящая или жесткая заделка. Для решения интегральных уравнений в этих работах развиваются регулярный и сингулярный асимптотические методы (в зависимости от значения основного безразмерного параметра, характеризующего относительную удаленность области контакта от вершины клина), метод получения точного решения интегрального уравнения после специальной аппроксимации функции-символа ядра, другие методы. Получены решения, ограниченные на одном или на обоих краях области контакта, соответственно для наклонного или параболического штампов. Аналогичная задача с неизвестной областью контакта в случае параболического штампа изучалась в работе В. И. Короткина, И. А. Лубягина и М. И. Чебакова [35] с использованием специальной аппроксимации символа ядра интегрального уравнения. Сделаны расчеты применительно к плоским зубчатым зацеплениям.  [c.190]

В. М. Александровым, Ю. Н. Пошовкиным [24] и Н. В. Генераловой, Е. В. Коваленко [32] решены соответственно плоская и пространственная контактные задачи о вдавливании без трения полосового в плане штампа в поверхность линейно-деформируемого основания, армированную тонким упругим покрытием переменной толщины, жесткость которого соизмерима или меньше жесткости основного упругого тела. Обе задачи сведены к исследованию интегрального уравнения Фредгольма второго рода с коэффициентом при старшем члене, являющимся достаточно произвольной функцией поперечной координаты. Для его решения в первом случае использовался метод сплайн-функций в сочетании с методом ортогональных многочленов, когда толщина покрытия постоянна. Во втором варианте применялся проекционный метод Бубнова-Г алеркина с выбором в качестве координатных элементов систем ортогональных полиномов или дельтаобразных функций (вариационно-разностный метод), а также алгоритм сращиваемых асимптотических разложений, когда упомянутый выше коэффициент мал. Доказано, что неравномерность толщины покрытия существенно влияет на закон распределения контактных давлений.  [c.463]

Прежде всего рассмотрена локальная задача о контакте между недеформируе-мой четвертью плоскости и полуплоскостью, находящейся в условиях ползучести. Она эквивалентна известной задаче Черепанова Райса Хатчинсона о трещине. Отсюда получено напряженно-деформированное состояние вблизи угла как функция одного свободного параметра. Внутреннее решение для тонкого слоя получено асимптотическим анализом, для полупространства — методом Н.Х.Арутюняна, оба решения с)п ь функции еще одного свободного параметра. Размер погранслоя может быть рассмотрен как третий свободный параметр. Интегральное условие статики системы и требование непрерывности основных характеристик контактной задачи приводят к нелинейному алгебраическому уравнению для численного определения свободных постоянных. В частных сл) аях его решение может быть дано явными формулами. Помимо названных задач решена периодическая задача, моделирующая изготовление штамповкой плиты с ребрами. Более того, полностью изучены как отдельные случаи локальное решение вблизи вершины угла при ползучести (произвольный угол, различные граничные условия), асимптотика осесимметричной задачи вблизи конической точки (произвольный зп ол, различные граничные условия), а также найдены внутренние асимптотики плоской задачи для тонкого слоя из материалов Надаи и Эмбера.  [c.539]


Если теперь опустим звездочки в обозначениях для величин, стояпщх слева, то придем к основному интегральному уравнению плоских контактных задач для неоднородных стареюпщх оснований (2.1)-(2,3) при дополнительных условиях (2.4)-(2.5).  [c.71]

Создание теории сингулярных интегральных уравнений с ядром типа Коши, принявшей к настоящему времени в некотором смысле завершенный вид, в основном в работах тбилисской школы, активно способствовало развитию метода потенциалов и интегральных уравнений в теории плоских задач математической физики. По этим вопросам читатель может найти исчерпывающие сведения в монографиях Бицадзе [1, 2], Векуа И. [1 ], Векуа Н. [1], Гахов [1], Купрадзе [7, 9, 13], Лурье [1, 2], Михлин [1], Мусхелишвили [1, 31, Хведелидзе [1].  [c.84]


Смотреть страницы где упоминается термин Интегральные уравнения основных плоских задач : [c.5]    [c.37]    [c.236]    [c.121]    [c.92]    [c.182]    [c.292]    [c.588]    [c.456]    [c.675]    [c.239]   
Смотреть главы в:

Методы математической теории упругости  -> Интегральные уравнения основных плоских задач



ПОИСК



Задача основная

Основное интегральное уравнение

Основные задачи

Основные интегральные уравнения

Основные уравнения задачи

Основные уравнения плоской задачи

Плоская задача

Решение основного интегрального уравнения плоской контактной задачи нелинейной теории ползучести

Уравнение задачи (А) интегрально

Уравнение задачи (А) интегрально Si) интегральное

Уравнение основное

Уравнения для плоских задач

Уравнения интегральные

Уравнения основные



© 2025 Mash-xxl.info Реклама на сайте