Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Интегральные вариационные принципы механики

Интегральные вариационные принципы механики  [c.467]

Вопрос о применимости интегральных вариационных принципов механики к не-голономным системам имеет длительную и непростую историю. Библиографию по этому вопросу и основные результаты см. в статье Румянцев В. В. Об интегральных принципах для неголономных систем // ПММ, 1982, Т. 46, вып. 1, С. 3-12.  [c.467]

Монография Н. Е. Жуковского О прочности движения (1882) содержит теорию устойчивости траекторий динамических систем, которую сейчас называют теорией орбитальной устойчивости. Этот труд систематизирует и пополняет результаты В. Томсона и П. Тэта, изложенные в их известном Трактате натуральной философии Для Томсона и Тэта отправным пунктом была теория кинетических фокусов К. Якоби, намеченная в его Лекциях по динамике . Якоби, исходя из наглядных геометрических соображений, показал, что на истинной траектории динамической системы действие , которое Входит в интегральные вариационные принципы механики (П. Мопертюи, Л. Эйлер, Ж. Лагранж), не обязательно минимально. Томсон и Тэт связали эти результаты с теорией устойчивости, показав, что минимальность действия на траектории влечет за собою устойчивость последней, тогда как стационарность действия на траектории,— а только к этому должен сводиться вариационный принцип механики,— оставляет вопрос об устойчивости траектории открытым, Жуковский справедливо оценил те несколько страниц из Трактата натуральной философии Томсона и Тэта, которые уделены авторами исследованию прочности (Жуковский пользуется этим термином вместо устойчивости), как только легкий набросок, в котором указываются пути для более обстоятельного исследования .  [c.122]


Модели для анализа напряжений и деформаций часто оказываются более удобными, если представлены в интегральной форме, вытекающей из вариационных принципов механики. Вариационный принцип Лагранжа (принцип потенциальной энергии) гласит, что потенциальная энергия системы получает стационарное значение на тех кинематически возможных перемещениях, отвечающих заданным граничным условиям, которые удовлетворяют условиям равновесия. Поэтому модель представляют в виде выражения потенциальной энергии П системы как разности энергии деформации Э и работы массовых и приложенных поверхностных сил А  [c.158]

В заключение остановимся на классификации вариационных принципов. Обычно различают дифференциальные и интегральные принципы. Дифференциальные принципы отражают свойства механических движений, соответствующие некоторому моменту или весьма малому промежутку времени. Интегральные принципы отражают свойства механических движений, соответствующие конечному интервалу изменения времени. Сначала остановимся на рассмотрении дифференциальных вариационных принципов механики.  [c.184]

Выше шла речь о теории сплошной среды с неподвижными дислокациями. Связь обобщенной механики сплошной среды с теорией пластичности естественно привела к необходимости рассмотрения движущихся дислокаций. Это изучение проводится посредством постулирования интегрального вариационного принципа, аналогичного принципу Остроградского — Гамильтона, несколько обобщающего принцип, рассматриваемый в общей теории относительности. Введение этого принципа в общей теории относительности позволило, в частности, рассматривать правую часть уравнений (IV. 169) как некоторые функциональные производные. Применение аналогичного принципа в континуальной теории дислокаций оказалось также целесообразным. Подробное изложение этих вопросов выходит за пределы содержания нашей книги ).  [c.537]

Мы знакомы уже с одним из вариационных принципов механики — принципом Даламбера. Этот принцип исходит из произвольно выбранного мгновенного состояния системы, которое сравнивается со смежным ее состоянием, возникающим из предыдущего в результате виртуального перемещения (ср. 7). Напротив, те вариационные принципы механики, к изучению которых мы сейчас перейдем, являются интегральными принципами они позволяют рассматривать ряд последовательных состояний системы за конечный промежуток времени или, что то же самое, на конечном отрезке траектории и сравнивать их с соседними виртуальными состояниями, находящимися с ними в определенном соответствии.  [c.242]


Вариационные принципы механики представляют собой выраженные языком математики условия, которые отличают истинное (действительное) движение системы от других кинематически возможных, т. е. допускаемых связями, движений. Вариационные принципы делятся на дифференциальные и интегральные. Первые дают критерий истинного движения для данного фиксированного момента времени, а вторые — на конечном интервале времени.  [c.102]

Вариационный принцип Гамильтона (общий случай). Общее уравнение динамики Даламбера—Эйлера является вариационным принципом механики, выраженным в дифференциальной форме. Важнейшим интегральным вариационным принципом аналитической механики является принцип Гамильтона, который может быть выведен из общего уравнения динамики. Пусть все связи, наложенные на систему, — идеальные. Уравнение (17) принимает вид  [c.36]

Традиционный подход в механике газа, жидкости, твердого деформирования тела основывается на понятии сплошной среды [60, 67, 167, 174] и приводит к построению континуальных моделей сред, которые выражаются в терминах интегральных или дифференциальных законов сохранения для основных параметров среды, являющихся функциями непрерывных координат и времени, определенной гладкости и заданными начально-краевыми условиями, с учетом конкретных реологических свойств среды (упругость, вязкость, пластичность и т. д.). Для построения приближенных методов решения эффективны вариационные формулировки моделей [1, 23 33], следующие из общих вариационных принципов механики сплошных сред.  [c.83]

Вторая схема имеет в своей основе интегральный вариационный принцип Остроградского — Гамильтона. Она в физическом плане является более формальной, но зато и более общей, ибо распространяется за пределы классической механики. Исходными понятиями здесь являются действие, функция Лагранжа они весьма абстрактны.  [c.211]

Особое место в ряду всех известных принципов механики занимает интегральный вариационный принцип Гамильтона, опубликованный им в первоначальной форме в 1834 г. Принцип Гамильтона позволяет выразить в простой, компактной и удобной ч )орме законы механики — механики голономных систем, движущихся под действием потенциальных сил.  [c.246]

Когда мы имеем дело с различными принципами механики, то, в первую очередь, нас интересует сравнение их общности, сравнение, так сказать, размеров подведомственных этим принципам областей. С этой целью мы, отправляясь от принципа Даламбера — Лагранжа (динамического принципа виртуальных перемещений), выведем интегральный вариационный принцип Гамильтона.  [c.246]

Интегральный вариационный принцип, о котором пойдет речь,, возник значительно раньше принципа Гамильтона в 1744 г., почти одновременно и независимо, появились работы Мопертюи и Эйлера, содержащие в зародыше изложение этого принципа. Мопертюи, формулировка которого была весьма не ясной, придавал высказанному им принципу некий всеобщий телеологический смысл — принцип выражал будто бы целенаправленность действий природы. Эйлеру принадлежит первая отчетливая формулировка математического содержания, которое следует вложить в понятие принципа принцип наименьшего действия есть интегральный вариационный принцип, позволяющий вывести дифференциальные уравнения движения — уравнения экстремалей. В работах, посвященных принципу наименьшего действия, Эйлером быv м созданы основы вариационного исчисления и показано значение интегрального вариационного принципа в механике. Но несмотря на это, сам Эйлер всегда подчеркивал приоритет Мопертюи. Можно предполагать, что выступления Эйлера на стороне Мопертюи в спорах того времени по поводу философского смысла и научно-познавательного значения принципа привели к тому, что имя Мопертюи удержалось в названии принципа. Отметим, кстати, что само название принцип наименьшего действия ,, сохранившееся ло наших дней, принадлежит Мопертюи.  [c.251]

Как было отмечено в предыдущем параграфе, а также в 2.14, линейные задачи механики сплошной среды могут быть представлены л виде вариационного уравнения (интегрального тождества, принципа возможных перемещений и т. д.)  [c.331]


Без преувеличения можно сказать, что книга Ю, Н. Работнова к настоящему времени является лучшей среди подобных ей книг как у нас в стране, так и за рубежом. Впервые с единых позиций в ней дается изложение основ всех главных разделов механики деформируемого твердого тела. Книгу отличает компактность изложения, достигаемая за счет широкого применения таких эффективных методов исследования, как вариационные принципы, тензорные исчисления, теория функций комплексного переменного, интегральные преобразования и т. д. Этому также способствует и оригинальная трактовка теории напряжений. Естественно, что, представляя проблему во всем ее многообразии (стержни, пластинки, оболочки, пространственные тела, упругость, пластичность, ползучесть, наследственность, устойчивость, колебания, распространение волн, длительная прочность, разрушение), автор сконцентрировал внимание на принципиальных вопросах. Тем не менее книга снабжена достаточно большим количеством примеров расчета, для того чтобы читатель мог составить представление о практических возможностях теории.  [c.9]

Лекции дают достаточно глубокий фундамент для изучения специальной теории относительности, квантовой механики и других разделов теоретической физики. В них подробно освещаются вариационные принципы и интегральные инварианты механики, канонические преобразования и уравнение Гамильтона — Якоби.  [c.2]

Курс аналитической механики является фундаментом, на который опирается изучение таких разделов теоретической физики, как квантовая механика, специальная и общая теория относительности и др. Поэтому в книге подробно освещаются вариационные принципы и интегральные инварианты механики, канонические преобразования, уравнение Гамильтона — Якоби, системы с циклическими координатами (главы И, III, IV и VII). Следуя идеям А. Пуанкаре и Э. Картана, автор кладет в основу изложения материала интегральные инварианты механики, которые здесь являются не декоративным украшением теории, а ее рабочим аппаратом.  [c.9]

О вариационных принципах. Вариационными принципами классической механики называют общие закономерности механического движения, позволяющие из совокупности кинематически возможных движений механической системы, т. е. движений, допускаемых наложенными на систему связями, выделить действительное движение, которое она будет совершать в заданном силовом поле. При этом дифференциальные вариационные принципы дают критерий истинного движения, отнесенный к некоторому моменту времени (например, принцип возможных перемещений), а интегральные — к конечному интервалу времени (например, принцип Гамильтона—Остроградского).  [c.308]

Основные положения механики могут быть сформулированы в трех эквивалентных формах в виде дифференциальных уравнений, или интегральных уравнений, или вариационных принципов.  [c.27]

По сложившейся традиции в курсы аналитической механики включают общие уравнения движения голономных и неголономных систем, вариационные принципы, теорию канонических преобразований, канонические уравнения с теорией интегрирования их (теорема Гамильтона — Якоби), интегральные инварианты, теорию последнего множителя и т. П. основные законы механики считаются известными и не подвергаются обсуждению.  [c.9]

Авторам неизвестны работы, в которых рассматривались бы динамические задачи для тел с трещинами, учитывающие возможность одностороннего контактного взаимодействия берегов. Исключение составляют лишь работы [104—107, 128—136, 138]. В список литературы включены работы, так или иначе связанные с основной темой монографии. Эту литературу можно условно классифицировать по следующим темам механика разрушения (в основном динамическая) динамическая теория упругости контактные задачи теории упругости и теории трещин вариационные принципы и теория вариационных неравенств интегральные уравнения и теория потенциала численные методы, метод граничных элементов литература математического характера. Каждая из упомянутых тем имеет обширную библиографию, часто насчитывающую тысячи источников, поэтому сделать достаточно полный обзор по каждой теме не представляется возможным. Цитируются в основном работы, близкие по теме или по математическим методам к нашим наследованиям, а также монографии и обзоры.  [c.8]

Следуя традиционному изложению, принятому в механике систем с конечным числом степеней свободы, рассмотрим сначала дифференциальный вариационный принцип, которым является принцип Гаусса, или принцип наименьшего принуждения, а затем наиболее известный интегральный принцип — принцип Га-,, Мильтона — Остроградского. После этого рассмотрим некоторые следствия, вытекающие из этих принципов.  [c.64]

Принципы механики подразделяются еще на невариационные и вариационные. Невариационные законы устанавливают соотношение между величинами, имеющими место для действительного движения. Вариационные устанавливают признаки, отличающие действительное движение от всех других движений, кинематически возможных. Примером вариационных дифференциальных принципов служит принцип возможных перемещений и общее уравнение механики. Известен ряд вариационных интегральных принципов, обладающих различной общностью. Наиболее общим является принцип, установленный Гамильтоном и обобщенный Остроградским, или принцип экстремального действия.  [c.211]


Глава IV содержит изложение механики систем со связями и основ так называемой аналитической механики. Под аналитической механикой понимается часть механики, в которой изучаются общие принципы механики — вариационные, дифференциальные и интегральные принципы, обобщаются основные понятия механики, а движение различных систем описывается с помощью уравнений, сохраняющих свой вид при переходе от одних переменных к другим. Основное содержание главы IV — ВТО механика Лагранжа.  [c.6]

Структурные аналогии ряда тем аналитической механики выступают ярче, если в основу выводов положить формулу первой вариации функционала. На этом пути структурно объединяются такие, казалось бы, разные вопросы, как вариационный принцип Гамильтона—Остроградского, принцип Эйлера—Лагранжа, законы сохранения мер движения в ньютоновской механике - сохранение количества движения, механической энергии и момента количества движения, закон сохранения обобщенного импульса и обобщенный закон сохранения энергии в аналитической механике, интегральные инварианты динамики, уравнения Гамильтона — Якоби и др.  [c.281]

ГЛАВА XXI. ВАРИАЦИОННЫЕ ИНТЕГРАЛЬНЫЕ ПРИНЦИПЫ КЛАССИЧЕСКОЙ МЕХАНИКИ  [c.390]

А. Зоммерфельд отмечает, что интегральные принципы определяют закон движения материальной системы не ее состоянием в данный момент времени и в прошлом, а в одинаковой степени отображают прошлое и будущее системы. Это, по мнению А. Зом.мерфельда, позволяет усматривать в интегральных принципах отображение некоторой целенаправленности природы. Далее А. Зоммерфельд указывает, что математическое исследование вариационных принципов приводит к отрицанию такой целенаправленности . Об этом было сказано выше. А. Зоммерфельд не возвращается к вопросу об отрицании детерминизма, содержащемся в его исходной характеристике интегральных вариационных принципов. Однако ясно, что сама постановка вопроса извращает действительный смысл интегральных вариационных принципов механики.  [c.205]

Интегральные вариационные принципы механики в форме Гельдера — Фосса подверглись критике со стороны М. Рети , который заметил, что они выражают лишь необходимое, а не достаточное условие действительности движения. Рети обобщил принцип Гельдера — Фосса таким образом, чтобы он представлял и достаточное условие действительного движения неголо-номной системы. Он установил также новый общий интегральный принцип неголономной механики (принцип Рети), из которого принцип Гельдера — Фосса вытекает как частный случай. Рети подверг критике и исследования Журдена, относящиеся к интегральным вариационным принципам динамики неголономных систем. Ф. Журден получил новый общий интегральный 92 принцип неголономной механики, отличный от принципа Рети (принцип Журдена), и показал, что он эквивалентен принципу Гельдера — Фосса. Между Рети и Журденом возникла дискуссия, в результате которой выяснилось, что в исследованиях Фосса и Рети понятие вариации трактуется не точно в смысле Гельдера. Развивая последовательно и систематически неклассический вариант Гельдера, Журден показал, какую форму в действительности должен иметь принцип Гельдера в лагранжевых координатах.  [c.92]

Представляет интерес дискуссия по вопросу правомерности интегральных принципов в динамике неголономных систем между Р. Кепоном, Г. Джеф-фрейсом и Л. Персом В результате выяснилось, что обе существующие концепции решения этого вопроса — классическая и неклассическая — не содержат внутренних противоречий и одинаково приемлемы, дополняя друг друга и создавая те или другие удобства при решении конкретных задач и доказательствах теорем. Однако неклассическая концепция Гельдера дает возможность расширить область применимости интегральных вариационных принципов механики за пределы вариационного исчисления и в этом смысле имеет большое теоретическое и практическое значение, создавая перспективы развития неголономной механики.  [c.93]

Переходя к характеристике развития интегральных вариационных принципов аналитической механики в первой половине XX в., следует заметить, что еще в конце XIX в. были высказаны две противоположные точки зрения по вопросу о правомерности принципов такого рода в динамике неголономных систем. Одна из них принадлежит Г. Герцу и состоит в том, что интегральные принципы неприменимы для неголономных систем, а вторая, противоположная,— О. Гельдеру . Однако это противоречие только кажущееся, ибо в исследованиях названных ученых фигурируют разные способы варьирования. Эти две различные интерпретации понятия варьированного движения,— мы их будем называть соответственно классической и неклассической,— в супщости и определили дальнейший ход развития интегральных принципов аналитической неголономной динамики.  [c.90]

А. К.). В наши дни установлено, что М ногие закономерности микромира (например, взаимодействия элементарных частиц) существенно отличаются от закономерностей макромира и для познания закономерностей микромира понадобились такие разделы математики, которые наверное не были изобретены с целью приложения к экспериментальным наукам и, конечно, не обусловлены достижениями экспериментальной физики XX в. Думаю со мной согласятся многие, если я выскажу утверждение, что геометрию Лобачевского, теорию функций комплексного переменного, вариационные принципы механики, интегральные инварианты для канонических уравнений Гамильтона, открытие планеты Нептун и многое другое нельзя доказательно обусловить развитием техники или научного эксперимента. Исследовательская работа в высших сферах абстракций не менее важна для развития науки и становления новых научных методов. Ф. Энгельс указыва ет в своей знаменитой работе Людвиг Фейербах и конец классической немецкой философии , что во многих случаях научные теории развиваются из самих себя и (подчиняются своим со бственным законам .  [c.6]

Г. Ю. Джанелидзе и А. И. Лурье, О применении интегральных и вариационных принципов механики в задачах колебаний. При -кладная математика и механика, т. XXIV, вып. 1, стр. 80—87, 1960 г.  [c.690]

Таким образом, интегральный вариационный принцип (32.11) в компактной форме содержит в себе всю динамику как свободных, так и несвободных голономных систем с идеальными связями. Кроме тог , указанный принцип удается распространить и на неголо немные механические системы. Это означает, что существуют два способа построения классической механики индуктивный метод,  [c.185]

НЕСУЩАЯ СПОСОБНОСТЬ, понятие пластичности теории. Н. с. характеризуется предельной комбинацией нагрузок, при к-рых начинается неограниченное возрастание пластич. деформации конструкции из идеально-пластич. материала. Во многих случаях имеет смысл рассматривать И. с. жёстко-пластических тел. Использование Н. с. для установления допустимых нагрузок приводит к уменьшению металлоёмкости конструкций. НЁТЕР ТЕОРЕМА, фундаментальная теорема физики, устанавливающая связь между св-вами симметрии физ. системы и сохранения законами. Сформулирована нем. математиком Э. Нетер (Е. Noether) в 1918. Н. т. утверждает, что для физ. системы, ур-ния движения к-рой имеют форму системы дифф. ур-ний и могут быть получены из вариационного принципа механики, каждому непрерывно зависящему от одного параметра преобразованию, оставляющему инвариантным действие (S), соответствует закон сохранения. Из условия обращения в нуль вариации действия, 05=0 (наименьшего действия принцип), получаются ур-ния движения системы. Каждому преобразованию, при к-ром действие не меняется, соответствует дифф. закон сохранения. Интегрирование ур-ния, выражающего такой закон, приводит к интегральному закону сохранения. И. т. даёт наиб, простой и универсальный метод получения законов сохранения в классич. и квант, механике, в теории полей и т. д.  [c.466]


Когда мы выражаем принципы механики в интегральной форме, то, если интеграл берется по времени, поведение системы как бы рассматривается в будущий и прошедший моменты времени в отличие от принципов, выраженных в дифференциальной форме. Однако это кажущееся предвидение будущего и определение из будущего настоящего является действительно кажущимся, так как вариационные принципы легко могут быть преобразованы к такому виду, при котором время исключено (выражение принципа наименьшего действия, данное Якоби) или не входит совершенно (принцип Г ерца).  [c.869]

Н. Н. Бухгольца, И. М. Воронкова, А. П. Минакова и др. Поэтому в данном сборнике задачи по традиционным разделам механики представлены сравнительно слабо и основное внимание уделяется тем ее разделам, которые еще не нашли достаточно полного отражения в учебной литературе, в частности электромеханическим аналогиям, вариационным принципам, интегральным инвариантам, уравнениям Гамильтона, каноническим преобразованиям, методу Якоби и т. д.  [c.6]

Эйлер (Euler) Леонард (1707-1783) — выдающийся математик, механик, физик и астроном. В 1724 г. окончил Базельский университет в 1727 г. поступил адъюнктом в Петербургский университет. В 1741 г. во время бироновщины из России переехал в Берлин, но в 1766 г. вновь приехал в Петербург, где и работал до конца жизни. Эйлеру принадлежит более 850 фундаментальных исследований, из которых свыше 200 статей и книг посвящены проблемам механики. Наиболее известны двухтомная монография Механика, т. е. наука о движении, изложенная аналитическим методом (1753 г.), два тома Алгебры и три тома Интегрального исчисления 1769-1771 гг.). Впервые сделал аппаратом механики дифференциальные уравнения, дифференциальную геометрию, вариационное исчисление. Устранил неполноту первых вариационных принципов Ферма, Мопертюи и И. Бернулли, обосновав принцип наименьшего действия (1753 г.), В Началах движения жидкостей (1757 г.) впервые дал вывод уравнения неразрывности для сжимаемой жидкости и уравнения изменения количества движения, называемого уравнением Эйлера. Не менее известны работы по баллистике и по движению твердого тела. Работы Эйлера оказали огромное влияние на последующее развитие науки. По образному выражению Лапласа, Эйлер стал общим учителем всех нас .  [c.44]

Основные принципы механики достаточно полно и подробно изложены в книгах 161, [20). [21], [ЗЭ]. С генезисом основных понятий механики можно познакомиться по книге [28]. В [26] содержится оригинальное построение динамики, в которой отсутствует понятие ускоряющей силы искривление траекторий вызывается лишь связями, наложенными на систему. Сборник статей [10] дает хорошее представление о развитии вариационных методов классической механики до 1950 года. В книге [23] развивается систематический подход к гамильтоновой механике, основанный на использовании интегральных инвариантов. Работа [25] содержит построение теории гамильтоно вых систем со связями.  [c.291]


Смотреть страницы где упоминается термин Интегральные вариационные принципы механики : [c.7]    [c.467]    [c.85]    [c.327]    [c.22]    [c.8]    [c.144]    [c.97]   
Смотреть главы в:

Теоретическая механика  -> Интегральные вариационные принципы механики



ПОИСК



59 Вариационные принципы механик

Вариационные интегральные принципы классической механики

Вариационные принципы механики

Интегральные вариационные принципы механики Принцип Гамильтона-Остроградского

Интегральные принципы механик

Принцип вариационный

Принцип вариационный интегральный

Принципы интегральные

Принципы механики

Принципы механики интегральные

Ряд вариационный



© 2025 Mash-xxl.info Реклама на сайте