Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Пластичность — Понятие

Как это уже было показано, значения деформаций при на-грузке и разгрузке образца за пределом упругости для одного и того же напряжения неоднозначны. Двузначность сохраняется и при сложном напряженном состоянии в случае нагрузки и разгрузки образца, поэтому в теории пластичности вводят понятие об активной и пассивной деформациях, простом и сложном нагружениях.  [c.97]

У1И.5. Теории пластичности. Общие понятия  [c.103]


В теории пластичности используется понятие интенсивности деформаций сдвига 7 , которое формально определяется как удвоенный радикал из второго инварианта девиатора деформаций  [c.23]

Так, более подробно разобраны понятия тензоров напряжений и деформаций и их разложение на шаровой тензор и девиатор, добавлен закон Гука в тензорной форме. В новой, V главе рассматриваются простейшие задачи теории упругости чистый изгиб прямого призматического стержня и кручение круглого стержня постоянного сечения. В главе VI добавлен расчет балки-стенки. Далее добавлены следую-ш,ие параграфы Понятие о действии сосредоточенной силы на упругое полупространство , Понятие о расчете гибких пластинок , Понятие о расчете гибких пологих оболочек . Переработан раздел о математическом аппарате теории пластичности, добавлено понятие о теории пластического течения, дано понятие о несущей способности балок и плит на основе модели жесткопластического материала. Вновь написаны главы ХП1 и XIV об основных- зависимостях теории ползучести и даны простейшие задачи теории ползучести.  [c.3]

В теории пластичности применяется понятие девиатор тензора деформаций . Для этого разлагают (аналогично тому, как это было проведено для напряжений) тензор деформации на сумму девиатора и шарового тензора  [c.52]

До сих пор теория идеальной пластичности оперировала понятием изотропного тела, но не изотропной теории (этот термин повторяется в работе [10] дважды). Следовало бы пояснить, что понимается иод этим термином.  [c.131]

Главы I и II содержат основные уравнения механики сплошной среды и основные законы пластичности. Введены понятия о тензорах и девиаторах напряжения, деформации и скорости деформации, а затем сформулированы их основные свойства.  [c.3]

Наука о механическом движении и взаимодействии материальных тел и называется механикой. Круг проблем, рассматриваемых в механике, очень велик и с развитием этой науки в ней появился целый ряд самостоятельных областей, связанных с изучением механики твердых деформируемых тел, жидкостей и газов. К этим областям относятся теория упругости, теория пластичности, гидромеханика, аэромеханика, газовая динамика и ряд разделов так называемой прикладной механики, в частности сопротивление материалов, статика сооружений, теория механизмов и машин, гидравлика, а также многие специальные инженерные дисциплины. Однако во всех этих областях наряду со специфическими для каждой из них закономерностями и методами исследования опираются на ряд основных законов или принципов и используют многие понятия и методы, общие для всех областей механики. Рассмотрение этих общих, понятий, законов и методов и составляет предмет так называемой теоретической (или общей) механики.  [c.5]


Условия (критерии) пластичности и разрушения являются важными обобщениями понятий пределов текучести и прочности на случай трехмерного напряженного состояния. Эти условия можно записать в виде  [c.57]

Некоторые пластичные материалы (например, среднеуглеродистая сталь, дюралюминий) дают при испытании на растяжение диаграмму, не имеющую площадки текучести. Для таких материалов вводят понятие об условном пределе текучести как о напряжении, при котором остаточная пластическая деформация составляет 0,2%, это напряжение (механическую характеристику материала) обозначают (в специальной и в справочной литературе зачастую обозначения физического и условного предела текучести не разграничивают, применяя общее обозначение о ).  [c.330]

Первые две главы посвящены выводу основных уравнений теории упругости для пространственной и плоской задач. В качестве приложения плоской задачи приводится расчет толстостенных цилиндров с днищем от внутреннего и внешнего давления и вращающихся дисков. Исследуются напряжения при действии силы на острие клина и полуплоскость. В пособии рассматриваются контактные напряжения и деформации при сжатии сферических и цилиндрических тел, дан расчет тонких пластин и цилиндрических оболочек, рассматривается кручение стержней прямоугольного, круглого постоянного и переменного сечений, дается понятие о задачах термоупругости, приводятся расчет цилиндров и дисков на изменение температуры, общие уравнения теории пластичности, рассматривается плоская задача, приводятся примеры.  [c.3]

Только в случае гидростатического давления интенсивность напряжений превращается в нуль. Интенсивность напряжений 04 при простом растяжении (О1 0, О2 = Оз = 0) совпадает с нормальными растягивающими напряжениями. Интенсивность напряжений вводится в соотношения теории пластичности вместе с понятием интенсивности деформации, определение которого дается ниже. Часто вместо них применяют пропорциональные им величины интенсивность касательных напряжений (октаэдрические напряжения) и соответствующий им октаэдрический сдвиг. Интенсивность напряжений является для каждого материала вполне определенной и не зависящей от вида напряженного состояния функцией интенсивности деформаций.  [c.99]

Для пластичных материалов, диаграммы растяжения которых не имеют ярко выраженной площадки текучести (средне и высокоуглеродистые, легированные стили) или совсем ее не имеют (медь, дюралюминий), вводится понятие условного предела текучести — напряжения, при котором относительное остаточное удлинение образца равно 0,2%. Условный предел текучести также обозначим От (иногда его обозначают о 0,2)-  [c.196]

В теории пластичности широко используется понятие интенсивности касательных напряжений т , которое формально определяется как радикал из второго инварианта девиатора напряя ений  [c.18]

Заметим, что в курсе Сопротивление материалов критерий Сен-Венана — Леви известен под названием теории прочности наибольших касательных напряжений. Вообще говоря, это название не совсем корректно, так как прочность и пластичность совершенно различные понятия и наступление пластического состояния еще далеко не означает исчерпание прочности материала.  [c.294]

Действительно, вводя аналогично понятию полной энергии Э в теории упругости или деформационной теории пластичности понятие энергии приращений перемещений при отсутствии массовых сил  [c.308]

У учащихся зачастую создается превратное представление, что для суждения о пластичности материала есть единственный признак-—наличие площадки текучести на диаграмме растяжения. Надо обратить их внимание, что это далеко не так. Многие сплавы цветных металлов, среднеуглеродистые и легированные стали, обладающие достаточно высокой пластичностью, дают диаграмму растяжения без площадки текучести (о степени пластичности судят по значениям величин б и г з). Может быть, следует рассказать об этом несколько позднее, рассмотрев сначала законы разгрузки и повторного нагружения, с тем чтобы можно было сразу дать понятие об условном пределе текучести аа.ч- Это понятие чрезвычайно важно, так как для больщинства конструкционных сталей существует условный, а не физический предел текучести. Надо отметить, что в большинстве стандартов на материалы обозначения физического и условного предела текучести не разграничены, принято единое обозначение От-  [c.76]


Для материалов хрупких и материалов ограниченной пластичности понятия и практически не различаются.  [c.134]

Свойства ньютоновской жидкости были рассмотрены выше. Остановимся на понятии идеального пластичного тела.  [c.288]

Для изучения курса сопротивления материалов и основ теории упругости и пластичности студент должен обладать знаниями в области высшей математики, теоретической механики и физики в объеме программ для технических вузов. В книге более широко, чем обычно, используется понятие вектора. Наряду с этим дается анализ вводимых упрощений с оценкой порядков вносимых при этом погрешностей. Форма изложения сочетает методы от простого к сложному (индуктивный) и от сложного к простому (дедуктивный). Гл. 1 носит вводный характер. Здесь же дается краткая историческая справка. В гл. 2. .. 4 рассмотрены простейшие задачи, которые представляют первый этап раздела Сопротивление материалов и вводят читателя в круг рассматриваемых вопросов.  [c.3]

Более разработанным, определенным и более простым (если вообще понятие простоты применимо к этим вопросам) является критерий пластичности. С него мы и начнем, а о критерии разрушения поговорим несколько позже.  [c.346]

Авторы данной книги ие согласны с такой интерпретацией этого термина. Неверно, что деформируемость характеризует одновременно и пластичность, и сопротивление деформации. Это две разные характеристики металла, причем с разной размерностью. Правильно было бы назвать для краткости металлы с высоким сопротивлением деформации твердыми или жесткими, с низким сопротивлением деформации — мягкими. Тогда понятия мягкий пластичный материал или твердый высокопластичный и т. п. вполне определенные. Нельзя отнести понятие деформируемость к телу, заготовке или образцу, так как разные металлы при одной и той же конфигурации образца будут обладать различной деформируемостью. Изменение конфигурации образца для одного и того же металла приводит к изменению схемы напряженного состояния, а следовательно, пластичности И деформируемости, что отражает одно из свойств металла (но не образца) изменять пластичность с изменением схемы напряженного состояния.  [c.490]

В дальнейшем при анализе факторов, влияющих на пластичность, будут использованы понятия, с количественной стороны характеризующие возможности реализации процесса пластического деформирования предел пластичности характеристика (показатель) пластичности характеристика (показатель) деформируемости.  [c.491]

Таким образом, понятие предела прочности при сжатии пластичной стали лишено физического смысла. Пределы текучести при растяжении и сжатии для одной и той же пластичной стали практически одинаковы.  [c.39]

При составлении учебника принималось во внимание то, что студенты изучают Основы теории упругости и пластичности после изучения ими курса Сопротивление материалов и поэтому с основными понятиями теории напряженного и деформированного состояния уже знакомы.  [c.6]

В теории пластичности большое значение имеют такие понятия, как девиаторы напряжений и деформаций, интенсивности напряжений и деформаций.  [c.272]

Наиболее простой задачей в теории пластичности является выяснение предельной нагрузки, при которой происходит исчерпание несущей способности данного сечения или данной системы, если при этом материал конструкции может быть с достаточной точностью апрокси-мирован диаграммой идеальной пластичности. Введение понятия пластический шарнир (и различных его модификаций, означающих полное исчерпание несущей способности отдельных сечений), условное предположение о том, что от момента образования одного такого шарнира до образования другого материала в области между шарнирами якобы находится в чистоупругом состоянии (гипотеза о мгновенном включении пластических шарниров ), сводят задачу вычисления несущей способности  [c.256]

Прандтль установил гиперболический характер уравнений плоской задачи теории идеальной пластичности, ввел понятие линий скольжения, совпадающих для изотропного идеальнопластического тела с линиями действия максимальных касательных напряжений, указал численные методы решения задач и дал классические решения задач о вдавливании жестких штампов в идеально пластическую среду.  [c.15]

В настоящее время имеется большое количество работ, посвященных анализу прочности и долговечности материалов и элементов конструкций. В ряде публикаций проблема прочности и разрушения рассматривается с феноменологических позиций— на базе концепций механики деформируемого твердого тела. К другому направлению относятся работы по развитию физики прочности и пластичности материалов, в которых анализ рузрушения проводится на атомарном и дислокационном уровнях, т. е. на микроуровне. В этих исследованиях весьма затруднительно включение в параметры, управляющие разрушением, таких основных понятий механики, как, например, тензоры деформаций и напряжений или жесткость напряженного состояния. Поэтому в последнее время интенсивное развитие получило направление, которое пытается соединить макро- и микроподходы при описании процессов повреждения и разрушения материала и формулировке критериев разрушения.  [c.3]

Механическое состояние материала в точке зависит в первую очередь от напряженного состояния в этой точке, хотя и не определяется им полностью. Так, например, при наличии температурного воздействия на механическом состоянии материала заметно сказывается фактор времени. При малом времени нагружения состояние материала можно рассматривать как упругое, а при большом — как пластичное. На механическое состояние в точке имеет некоторое влияние состояние материала в соседних точках. Наконец, что самое важное, само понятие механического состояния в точке не свободно от противоцечий с принятым ранее предположением о непрерывности среды. Это обнаруживается в первую очередь при изучении вопросов разрушения, поскольку процесс образования трещин в металлах тесно связан с их молекулярной и кристаллической структурой.  [c.259]


Металлические связи образуют структуры путем взаимодействия положительных ионов решетки (атомных остатков) и делока-лизированных, обобществленных электронов. Эти связи являются гомеополярными. Они по существу не относятся к химическим, и понятие металлические связи можно считать качественным, так как металлы не имеют молекулярного строения, а их атомы соединяются в кристаллические образования. Этот вид связи и обусловливает высокую прочность, пластичность и электропроводность металлов. Энергия связи — около Ю Дж/моль. Прочная металлическая связь наблюдается при образовании интер-металлидов и некоторых твердых растворов. Одна из ее особенностей — отсутствие насыщения, определяемого валентностью соответствующих атомов.  [c.10]

Для объяснения последнего факта потребовалось введение понятия "дислокация". Однако вопрос о целесообразности и предназначении их для конденсированной среды остается открытым. Трудно согласиться с идеей о случайном характере формирования одного из важнейщих свойств твердых тел - пластичности при вероятностном распределении дислокаций  [c.64]

Необходимо четко определить понятие пластичности материала как свойство получать перед разрущеннем значительные остаточные деформации. Можно подробно не рассказывать о пластическом и хрупком состояниях материала, указав только, что речь идет о свойствах, выявляемых при испытаниях на одноосное растяжение при комнатной температуре и малой скорости деформации.  [c.76]

Надо четко ввести понятие о трех группах конструкционных материалов — пластичных, хрупкопластичных и хрупких. Указать, какие механические характеристики приняты в качестве предельных напряжений для материалов каждой из указанных групп.  [c.76]

Образцы высокоп,аастичных материалов осаживаются в лепешку , практически не разрушаясь. Поэтому для таких материалов не вводят понятие предела прочности при сжатии. К высокопластичным материЕшам можно отнести многие технически чистые металлы железо, алюминий, медь, никель, золото и т. д. Хорошей пластичностью обладают также многие сплавы металлов, в том числе различные марки стали.  [c.54]

В восемнадцати предшествующих главах были изложены различные разделы механики деформируемого твердого тела, при этом практическая направленность каждого из них не очень акцентировалась. Но основная область приложения механики твердого тела — это оценка прочности реальных элементов конструкций в реальных условиях эксплуатации. С этой точки зре-нпя различные главы приближают нас к решению этого основного вопроса в разной степени. Классическая линейная теория упругости формулирует свою задачу следуюш им образом дано пекоторое тело, на это тело действуют заданные нагрузки, точки границы тела претерпевают заданные перемещения. Требуется определить поле вектора перемещений и тензора напряжений во всех точках тела. После того как эта задача решена, возникает естественный и основной вопрос — что это, хорошо или плохо Разрушится сооружение или не разрушится Теория упругости сама по себе ответа на этот вопрос не дает. Правда, зная величину напряжений, мы можем потребовать, чтобы в каждой точке тела выполнялось условие прочности, т. е. некоторая функция от компонент о.-,- не превосходила допускаемого значения. В частности, можно потребовать, чтобы нигде не достигалось условие пластичности, более того, чтобы по отношению к этому локальному условию сохранялся некоторый запас прочности, понятие о котором было сообщено в гл. 2 и 3. Мы знаем, что для пластичных материалов выполнение условия пластичности в одной точке еще не означает потери несущей способности, что было детально разъяснено на простом примере в 3.5. Поэтому расчет по допустимым напряжениям для пластичного материала безусловно гарантирует прочность изделия. Для хрупких материалов условие локального разрушения отлично от условия наступления текучести и локальное разрушение может послужить началом разрушения тела в целом. Поэтому расчет по допускаемым напряжениям для хрупких материалов более оправдан. Аналогичная ситуация возникает при переменных нагрузках и при действии высоких температур. В этих условиях даже пластические материалы разрушаются без заметной пластической деформации и микротрещина, возникшая в точке, где 42  [c.651]

Экспериментальная проверка этой гипотезы показала, что для пластичных материалов она приводит, в общем, к удовлетворительным результатам. Переход от упругого состояния к пластическому действительно с достаточной точностью определяется разностью между наибольшим и наименьшим из главных напряжений и слабо зависит от промежуточного главного напряжения 02- Наложение всестороннего давления на любое напряженное состояние не меняет Тщах и, следовательно, не оказывает влияния на возникновение пластических деформации. В частности, при всестороннем гидростатическом давлении Гтах обращается в нуль. Это означает, что в таких условиях в материале пластические деформации не возникают вовсе. Все опыты, проводившиеся при доступных для техники давлениях, подтверждают это. Сказанное нисколько не противоречит описанному ранее поведению чугуна в условиях высокого давления. Наложение всестороннего давления влияет не на условия пластичности, а на условия разрушения. Граница разрушения отодвигается, и материал приобретает способность пластически деформироваться без разрушения. И это характерно вообще для всех конструкционных материалов. Если представить себе существование цивилизации на самых больших глубинах океана, то для этих воображаемых разумных существ понятия хрупкости и пластичности материалов были бы отличны от наших.  [c.351]

Существенное различие теоретической и фактической прочности металла привело к мысли о необходимости рассматривать не идеальный кристалл с правильным расположением атомов, а реальный, содержащий дефекты (см. гл. II). В 1934 г. независимо друг от друга Тэйлором, Орованом и Поляни впервые введено представление о сдвиге (скольжении) одной части кристалла относительно другой посредством движения дислокации. Введение этого понятия было революционным для физики прочности и пластичности. Наиболее интенсивно теория дислокаций развивалась в послевоенные годы и в настоящее время стала неотъемлемой частью физики твердого тела, физических основ прочности и пластичности.  [c.21]

Многие пластичные материалы, например дк ра-люмин, не имеют на диаграмме растяжения плопдд-ки текучести (рис. 2.9). Для таких материалов вводится понятие условного предела текучести, в качестве которого принимается напряжение, соответствующее остаточной деформации 0,2%. Эта механическая характеристика обозначается Сд 2.  [c.38]

Введение понятий о сопротивлении отрыву и срезу и схемы, поясняющей различие в пластичности материала в зависимости от вида ])азрутепия и напряженного состояния  [c.480]


Смотреть страницы где упоминается термин Пластичность — Понятие : [c.76]    [c.42]    [c.89]    [c.164]    [c.564]    [c.45]    [c.45]   
Расчет на прочность деталей машин Издание 3 (1979) -- [ c.17 ]

Жестяницкие работы (1989) -- [ c.92 ]

Расчет на прочность деталей машин Издание 4 (1993) -- [ c.23 ]



ПОИСК



465, 466 — Пластичность при горячем деформировании 473 — Повышение пластичности и прочности 472 — Понятие

Жесткость материала — Понятие 92 — Характеристики пластичност

Некоторые понятия теории упругости и пластичности

Обобщение Прандтлем понятия идеально пластичной среды Применение к течению твердых тел в условиях плоского напряженного состояния, иллюстрируемое соответствующими изогональными линиями скольжения

Основные понятия и уравнения математической теории пластичности

Основные понятия теории пластичности уплотняемых тел (Пластические и вязкие деформации. Ассоциированный закон течения. Учет упрочнения. Условия устойчивости материала)

Теории пластичности анизотропного упрочнения разрушения 121 - Понятие

Теории пластичности. Общие понятия



© 2025 Mash-xxl.info Реклама на сайте