Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Устойчивость, виды полная

Вопрос об устойчивости линейной системы (7) решается непосредственно на основе изучения характеристических чисел этой системы (а иногда еш,е и структуры элементарных делителей фундаментальной интегральной матрицы решений системы). Но, как видно, и для нелинейной системы вопрос об устойчивости получает полное решение, если все характеристические числа % отрицательные (а система первого приближения правильная или неправильная, но обладает дополнительными свойствами) или если есть хотя бы одно ки > 0. Мы видим, таким образом, что первый метод позволяет не только решать задачу об устойчивости нулевого решения (безусловной или условной), но и получать уравнения интегральных кривых. Вместе с тем, пользуясь этим представлением решений, можно получить различные дополнительные сведения о поведении решений рассматриваемой системы дифференциальных уравнений. Выделяя главную часть этих представлений, можно получить решение с необходимой точностью в виде элементарных функций. При этом мы увидим различное влияние на происходящий процесс параметров, входящих в правую часть рассматриваемых дифференциальных уравнений. Например, если имеет место асимптотическая устойчивость, то можно видеть, как эти параметры влияют на скорость приближения точки ( 1 ( ),. . Хп ( )) к началу координат при - оо.  [c.71]


О — полная устойчивость — внешний вид поверхности н свойства материала не изменились.  [c.364]

Доказанная теорема дает полное описание всех движений, целиком находящихся в достаточно малой окрестности гомоклинической структуры. Совокупность этих движений достаточно сложна. При достаточной малости окрестности б гомоклинической структуры все эти движения седлового типа. Среди них бесчисленное множество пе зио-дических движений, отвечающих всевозможным периодическим последовательностям вида (7.80), асимптотических к этим периодическим, устойчивых по Пуассону непериодических. Несмотря на необычайную сложность этого множества движений оно не изменяет своей структуры при малых гладких возмущениях правых частей дифференциальных уравнений, поскольку его описание с помощью  [c.324]

Полный фазовый портрет получается периодическим продолжением найденных фрагментов фазовых кривых на всю ось Видим, что возможные движения рассматриваемой системы существенно зависят от значения параметра р. Если р > 1 (угловая скорость О вращения кольца невелика сравнительно с циклической частотой и> маятника), то фазовый портрет системы аналогичен фазовому портрету математического маятника. Если р < 1 (угловая скорость вращения кольца больше циклической частоты маятника), то фазовый портрет системы приобретает существенные отличия от фазового портрета математического маятника прежние устойчивые положения равновесия становятся неустойчивыми, появляются новые устойчивые положения равновесия с соответствующей перестройкой фазового портрета и добавлением новых сепаратрис Такое явление можно интерпретировать как катастрофу качественной картины поведения системы при прохождении параметра р через значение 7 = 1. О  [c.280]

Для течения в трубе кругового сечения полное теоретическое исследование устойчивости еще отсутствует, но имеющиеся результаты дают веские основания полагать, что это движение устойчиво по отношению к бесконечно малым возмущениям (как в абсолютном, так и в конвективном смысле) при любых числах Рейнольдса. В силу аксиальной симметрии основного течения, возмущения можно искать в виде  [c.151]

Необходимо иметь в виду, что местные ослабления стержня (например, отверстиями для заклепок) практически не влияют на его общую устойчивость, поэтому в формулы (10-12)—(10-14) следует подставлять полную площадь сечения ( брутто) без учета ослаблений.  [c.245]


Как мы уже отмечали (см. 1.1), в реальных системах всегда происходит рассеяние энергии, ее потери, ее уход из системы и, как следствие этого, уменьшение общего запаса колебательной энергии. Процесс рассеяния — диссипации энергии и уменьшения ее общего запаса присущ всем реальным системам, не содержащим устройств, пополняющих эту убыль энергии. Поэтому мы вправе ожидать, что учет процесса уменьшения исходного запаса колебательной энергии позволит нам получить решения, полнее описывающие реальные движения, чем при рассмотрении консервативных систем. Можно указать на множество характеристик колебательных процессов, которые обусловлены наличием в системе потерь энергии, происходящих по определенному закону и являющихся существенными как для линейных, так и для нелинейных систем. К числу проблем, требующих для своего решения учета диссипации, относятся, например, оценка резонансной амплитуды в линейной системе или в системе с малой нелинейностью, обший вид установившегося движения при наличии вынуждающей силы, закон изменения во времени амплитуды свободных колебаний, устойчивость различных состояний и пр.  [c.41]

С точки зрения предотвращения полного разрушения важно знать, к какому виду равновесия относится предельное состояние. Если предельное состояние равновесия устойчиво, то нет опасности немедленного полного разрушения. Если же предельное состояние неустойчиво, то такую трещину допускать нельзя, во всяком случае, без дальнейшего более подробного анализа. Выбор допускаемого размера начальной трещины в большой мере зависит от вида предельного состояния равновесия.  [c.327]

Таким образом показано, что неравенство Неймана является необходимым и достаточным условием для устойчивости по отношению к возмущениям специального вида. Исследование возмущений специального вида, несмотря на кажущуюся узость постановки задачи, дает достаточно полную информацию об устойчивости по отношению к возмущениям общего вида.  [c.86]

Краткий перечень возможностей универсальных программ показывает, что в них наиболее полно разработаны различные виды инженерного анализа, включая статический и динамический анализ, анализ устойчивости, нелинейный температурный анализ (в том числе с учетом процесса фазового перехода или химических  [c.56]

Следует, однако, иметь в виду, что достаточно полного исследования устойчивости полученных структур в [16] не проводилось.  [c.175]

В этих случаях П > 0 и равновесия устойчивы. Участкам D A" и A D" (без точек D и А ), где коэффициент при бф отрицательный и П < о, отвечают неустойчивые равновесия. В точках А и D, где dp/d(p = 0, изменение полной энергии представим в виде  [c.402]

Рис. 18.88. Система с полной диссипацией энергии под действием консервативной нагрузки а) движение корней Я и я( по Я-плоскости б) асимптотическая устойчивость в) потеря устойчивости в виде апериодического отклонения. Рис. 18.88. Система с <a href="/info/10491">полной диссипацией</a> энергии под действием консервативной нагрузки а) движение корней Я и я( по Я-плоскости б) <a href="/info/41779">асимптотическая устойчивость</a> в) <a href="/info/16664">потеря устойчивости</a> в виде апериодического отклонения.
Проанализировав знак второй производной полной потенциальной энергии по углу отклонения системы, можно установить, какие из ветвей полученного решения соответствуют устойчивым положениям равновесия. Для фп <я результат такого анализа изображен на рис. 1.13, 6. Как видим, поведение этой системы при Фо = О качественно отличается от поведения рассмотренной выше системы. При фо О критическая точка бифуркации второго типа трансформируется в критическую предельную точку l. При достижении этой предельной точки происходит потеря устойчивости исходной формы равновесия системы, причем поскольку в окрестности предельной точки нет новых устойчивых положений равновесия, система вынуждена скачком перейти в новое устойчивое положение, удаленное от исходного на конечное расстояние.  [c.20]


Согласно теореме Лагранжа состояние равновесия консервативной механической системы устойчиво тогда и только тогда, когда ее полная потенциальная энергия минимальна [40]. Необходимое условие минимума полной энергии записывается в виде вариационного уравнения Лагранжа  [c.41]

Однако энергетический метод может дать хорошее приближенное решение при небольшом числе членов ряда только тогда, когда имеется полная физическая ясность Б задаче, т. е. когда полностью ясна качественная картина потери устойчивости. Например, для шарнирно-опертого стержня с одной симметрично расположенной промежуточной упругой опорой (рис. 3.20, а) нетрудно представить себе, что при малой жесткости опоры с стержень теряет устойчивость по форме 1, близкой к одной полуволне синусоиды. Кроме того, в силу симметрии задачи всегда возможна потеря устойчивости по форме 2, при которой упругая опора не деформируется. Для формы 1 критическую силу можно получить, задавая прогиб в виде ряда  [c.108]

Сравнение уравнений (1), (2) с (35), (36) устанавливает их полную идентичность. Поскольку устойчивость изучаемой системы определяется знаком только вещественной части а ( i) показателя степени v (ц) в выражении (3), будем искать решение (35), (36) в виде  [c.16]

Полная устойчивость должна обеспечиваться у экскаваторов с любым видом рабочего оборудования также и при поворотных движениях, когда возникают добавочные инерционные нагрузки Pj (как указано на фиг. 23  [c.1176]

Для характеристики степени стабильности (степени устойчивости) хода производственного процесса существует много различных вариантов количественных оценок. Полной оценкой хода процесса должны быть охвачены следующие его стороны а) сохранение или несохранение постоянства первоначальной настройки и постоянства рассеи-ваиия б) отступления от теоретически рассчитанного хода процесса (от теоретической точностной диаграммы) в отношении иных положений центров группировании во времени и иных величин рассеивания во времени (постоянных — при точностной диаграмме № 1 фиг. 5 и переменных — при точностных диаграммах остальных видов).  [c.637]

При всем разнообразии типов горелок для сжигания мазута, отличающихся видом и параметрами энергоносителя для распыления, а также конструктивными особенностями, все горелки состоят из двух основных узлов — форсунки и воздухонаправляющего аппарата — регистра. Форсунки должны обеспечивать возможно более тонкое дробление и равномерное распределение частиц топлива в зоне горения. Регистры служат для создания завихренного потока воздуха, подводимого с большой скоростью к корню факела, способствующего интенсивному смешению с частицами топлива и подогреву образовавшейся смеси топочными газами, которые подсасываются вращающимся полым конусом потока к корню факела и ускоряют подготовку и сгорание топлива (рис. 3-4). Закрутка потока воздуха осуществляется при помощи косых (поворотных или неподвижных) лопаток, размещаемых в кольцевом канале регистра. В результате подсоса топочных газов в центральную часть вращающегося полого конуса в центральной части потока возникает циркуляция высоконагретых продуктов сгорания, обеспечивающих устойчивое поджигание вновь образующейся горючей смеси вблизи устья горелки. Количество продуктов сгорания, возвращаемых к устью горелки, возрастает с усилением закрутки. Это дает возможность получить устойчивое и полное сгорание мазута в широком диапазоне изменения нагрузок горелки путем применения сильной закрутки воздушных потоков в регистрах.  [c.75]

Результаты испытания этого сплава представлены на рис. 23. Здесь мы видим три порога устойчивости ( /в, 7в и /в), при котсфых скачкообразно повышается химическая устойчивость сплава. Полная защита достигается только при пороге устой-  [c.51]

Это хорошо видно на рис. 458, г, изображающем особенно неудачное расположение по схеме О, при котором поверхности качения наружных обой.м почти точно укладываются в сферу с центром в оси симметрии установки. Устойчивость вала против выворачивающего действия поперечной силы Р невелика вал оказывается как бы расположенным на сферической опоре. Расположение по схеме X (вид в) придает валу полную устойчивость.  [c.489]

Важным параметром сталей является отношение и Ов К в = ат/ств. Чем меньше Ктв, тем выше запас пластичности и качественнее сталь. Причем Ктв отражает способность стали к равномерной деформации без нарушения устойчивости (шейкооб-разование). Полное относительное удлинение 5 и сужение представляется в виде суммы 5 = 5 + 5к и v / = vj/e + v /k, где 5к и  [c.284]

Легко видеть, что эта функция непрерывна, обращается в нуль в начале координат и положительна в остальных точках вблизи него. Следовательно, функция V удовлетворяет условиям, при которых она может служить функцией Ляпунова для рассматриваемой задачи. С другой стороны, легко видеть, что производная dVidt, вычисленная в силу уравнений движения, тождественно обращается в нуль, т. е. выбранная функция является первым интегралом уравнений движения. Хотя теперь функция V и не является полной энергией системы, мы, применяя теорему Ляпунова, сразу устанавливаем, что перманентное вращение 1 устойчиво.  [c.235]

В сформулированных в предшествующем разделе критериях равновесия термодинамических систем также не в полной мере использованы следствия второго закона о максимальности энтропии изолированной системы или о минимальности термодинамических потенциалов при тех или иных условиях равновесия. Действительно, знаки неравенств для вариаций первого порядка в (11.1), (11.13) и других критериях соответствуют виду экстремума энтропии, внутренней энергии и т. д., но эти знаки, как отмечалось, относятся к особому случаю граничного экстремума характеристической функции. Если же последняя имеет в равновесии стационарное значение, то вопрос о виде экстремума (минимума, максимума или точки пЬрегиба) при использовании (11.1), (11.13), (11.31) и других остается открытым и для ответа на него надо дополнить указанные критерии соответствующими условиями устойчивости равновесия  [c.115]


Отметим, что периодическим колебаниям на фазовой плоскости соответствуют замкнутые фазовые траектории, и наоборот. Вид фазовых траекторий характеризует устойчивость или неустойчивость поло кения равновесия, достаточную малость колебаний и т д, Фазовые траектории для консервативной системы мож.но построить, используя интеграл энергии. Каждой фазовой траектории соответствует определенное значение полной механической зн-ергии,  [c.420]

Роль числа Рейнольдса в данном случае может играть величина или —при заданных значениях отношений R /R 2 и О1/Й2, определяющих тип движения . Будем следить за изменением какой-либо из собственных частот со = (/г) при постепенном увеличении числа Рейнольдса. Момент позникнове-ния неустойчивости (по отношению к данному виду возмущений) определяется тем значением R, при котором функция y(k) = = Im o впервые обращается в нуль при каком-либо значении k. При R < Rkp функция 7 (ft) везде отрицательна, а при R > Rkp она положительна в некотором интервале значений k. Пусть Лкр — то значение k, для которого (при R == R p) функция у (к) обращается в нуль. Соответствующая функция (27,4) определяет характер того (накладывающегося на основное) движения, которое возникает в жидкости в момент потери устойчивости оно периодично вдоль оси цилиндров с периодом 2п/ кр. При этом, конечно, фактическая граница устойчивости оиределяется тем видом возмущений (т. е. той функцией u) J>(k)), которая дает наименьшее значение Rkp именно эти наиболее опасные возмущения интересуют нас здесь. Как правило (см. ниже), ими являются осесимметричные возмущенпя. Ввиду большой сложности, достаточно полное исследование этих возмущений было произведено лишь для случая узкого зазора между цилиндрами (/1 = 2 — Ri R = (Ri + R2)/2). Оно приводит к следующим результатам ).  [c.145]

Если горизонтальный слой жидкости сильно подогреть снизу, то между нижней и верхней поверхностями возникает разность температур A7 =7 i —7 2>0. При малой разности температур ДГ<АГ р ниже некоторого критическою значения АГ р, подводимое снизу количество теплоты распространяется вверх путем теплопроводности и жидкость остается неподвижной. Однако при разности температур выше критической АТ>А7 р в жидкости начинается конвекция холодная жидкость опускается вниз, а нагретая поднимается вверх. Распределение этих двух противоположно направленных потоков оказывается самоорганизованным (рис. 48), в результате чего возникает система правильных шестиугольных ячеек (рис. 49). По краям каждой такой ячейки жидкость опускается вниз, а в центре поднимается вверх. Зависимость полного теплового потока I в единицу времени от нижней поверхности к верхней от разности температур АТ изображена на рис. 50. При АТ>АТ р состояние неподвижной теплопроводящей жидкости становится неустойчивым (пунктирная линия на рис. 50) и вместо него наступает устойчивый режим в виде конвекционных ячеек Бенара. Обусловливается это тем, что при большой разности температур покоящаяся жидкость уже не обеспечивает перенос возросшего количества теплоты, и поэтому устанавливается новый конвекционный режим.  [c.284]

В настоящее время теоретически достаточно полно исследованы условия возникновения первой области, т. е. условия устойчивости ламинарного пограничного слоя. Результатом этого исследования является определение теоретического критического числа Рейнольдса (предела устойчивости). Знание этого числа еще не дает возможности указать начало развитого турбулентного течения, т. е. положение точки перехода и соответствующее значение критического числа Рейнольдса. Проблема эта изучена недостаточно полно, и в последнее время особенно широкое развитие получили различные методы исследований перехода в аэродинамических трубах, при помощи которых получена достаточно обширная информация о возникновении турбулентности. Найденное при таких исследованиях положение точки перехода принято обычно характеризовать экспериментальным критическим числом Рейнольдса. Несмотря на известную ограниченность, расчетные методы теории устойчивости имеют большое практическое значение. Они позволяют сравнивать ламинарные пограничные слои с точки зрения возникающих явлений, обусловливающих переход в турбулентное состояние, определять вид обтекаемой поверхности, обеспечивающий сохранение устойчивого ламинарного течения (ламинаризированные профили), отыскивать условия такого сохранения другими методами (в частности, при помощи отсоса пограничного слоя).  [c.89]

В выражение для полной потенциальной энергии, представленное с учетом приведенных выше постулатов 1) и 2) членами в скобках в (137 ), не входят приращения второго порядка от массовых н поверхностных сил. Приращения первого порядка обращаются в нуль, так как действительные перемещения а, v, W в этом виде возмущения можно принять за виртуальные. Поскольку приращение второго порядка должно быть положительным, состояние является устойчивым в определенном здесь смысле. Мы увидим, что этот вывод связан с использовг.нием закона Гука, а также постулатов 1) и 2) ). Для нелинейных зависимостей между напряжениями и деформациями возможны приращения порядка выше двух.  [c.263]

Первое уравнение синергетики выполняется в интервале (К 2 в интервале - К23) реализуется второе уравнение синергетики. Это позволяет рассматривать каскад процессов роста трещины при изменении механизма роста треши-ны с помошью последовательности кинетических уравнений (4.47) с учетом граничных условий, определяемых физикой процесса роста трещин. Именно поэтому представило интерес рассмотреть имеющиеся экспериментальные данные по определению показателей степени в уравнении Париса, в которых предпринимались попытки выделения особых точек на кинетических кривых при исследовании сплавов на различной основе (табл. 4.3). В отобранных для анализа работах не ставилась задача построения единой кинетической кривой в виде последовательности дискретных переходов в связи со сменой механизмов разрушения. Поэтому критические точки СРТ или шага усталостных бороздок не были строго поставлены в соответствии со сменой механизма роста трещины. Вместе с тем проведенное обобщение свидетельствует о том, что последовательность в переходах через точки бифуркации в процессе роста усталостных трещин является устойчивой и в полной мере соответствует последовательности показателей степени тр. 4 2 4 — для последовательности развития трещин на микроуровне, мезо I и мезо П соответственно.  [c.220]

Чтобы обеспечить устойчивость и надежность линий электропередач, разработана целая система защит. Так, для защиты линий от атмосферных разрядов применяется молниезащита в виде стальных тросов, расположенных выше проводов, грозовые разрядники, дугогасящие катушки и т. д. Тросовая защита с хорошим заземлением обеспечивает полную грозоупорность линий электропередач. Для сглаживания фронта волны перенапряжения на подстанциях устанавливаются разрядники различных систем, которые гарантируют оборудование от повреждений.  [c.93]

При этом большинство легирующих добавок переходит в твердый раствор г. ц. к., как это видно на рис. 85. В результате быстрого охлаждения до комнатной температуры может быть получен твердый раствор, пересыщенный вакансиями, медью и другими легирующими добавками. Во время старения при температурах от комнатной до температуры, соответствующей линии предельного растворения (см. рис. 85), пересыщенной твердый раствор распадается. В определенных условиях это может приводить к значительному упрочнению сплава. Распределение медн в сплаве оказывает также определяющее влияние на сопротивление межкристаллитной коррозии и КР- Термодинамически устойчивый конечный продукт распада пересыщенного твердого раствора А1 — Си представляет собой двухфазную структуру, состоящую из насыщенного твердого раствора а (г. ц. к.) и равновесной фазы 9, имеющей тетрагональную кристаллическую решетку и близкой по составу соединению СиАЬ. Из-за различия кристаллических решеток равновесная фаза 0 некогерентна с твердым раствором г. ц. к. Высокая межфазная энергия поверхности раздела фаз (>1000 эрг/см ) [119] приводит к высокой энергии активации для зарождения фазы 0. Поэтому образованию равновесной фазы может предшествовать ряд превращений метаста-бильных фаз, энергия активации которых при зарождении ниже. Последовательность образования выделений достаточно полно была изучена и может быть представлена в виде следующего ряда [97, 119, 120]  [c.235]


Для группы станков формулы (105)—(109) будут иметь другой вид, который нетрудно установить. Следует иметь в виду, что важной целью улучшения качества машин является расширение возможностей реализации потенциальных резервов их использования. Улучшая динамические,кинематические и другие параметры машины (станка), создаются условия полного их экстенсивного и интенсивного использования, которые обеспечивают уменьшение величины удельных совокупных затрат общества на единицу продукции. Существенным резервом экстенсивного использования оборудования является быстрое и полное вовлечение в производство приобретенного и установленного оборудования. Полное использование оборудования по времени в немалой степени зависит от удобства его эксплуатации, например, от удобства и трудоемкости управления всеми его производственно-технологическими функциями, от быстроты монтажа и устойчивости настройки и т. д. Поэтому, создавая машины, следует улучшать их качество, направленное на обеспечение производственно-экономических требований. Кроме того, учитывая нехватку станочников, желательно направить поиски на такие изменения конструкции станка, приспособлений и режущего инструмента, которые значительно облегчают условия многостаночного их обслуживания. Это поможет решить вопрос о быстром вовлечении в производственный процесс неустановленного оборудования. Главной же направленностью усовершенствований машины является усиление интенсивности ее использования, т. е. повышение производительности, мощности машины и т. д. Известно, что производительность q и штучнокалькуляционное время выполнения технологической операции ш-к взаимосвязаны обратно пропорциональной зависимостью  [c.104]

В целом область устойчивости шестиногих симметричных походок хорошо известна (рис. 2) [1]. Успеху ее построения способствовал удачный выбор начального сечения у = /i2 (рис. 1, а), на котором имелись все элементы будуш ей формы. Было показано также, что при увеличении у все граничные линии раздвигаются , увеличивая зону, причем скорость увеличения для каждой линии неизменна, хотя и разная для разных линий. Своеобразная, гвоздичная , форма области устойчивости также получила свое объяснение. Все эти исследования были проделаны на уже имеющейся области. Максимальные размеры область устойчивости имеет, естественно, нри у = (рис. 2). В развернутом виде она занимает четыре координатных квадрата (рис. 2, а), т. е. при проходе области по ординате параметр имеет два полных периода своего изменения, а при проходе по абсциссе параметр Pi — 1,75 периода.  [c.30]

Устойчивость экскаватора во время работы ( рабочая устойчивость") определяется статическим соотношением сил, возникающих в системе элементов машины при резании грунта, когда помимо собственных весов конструкций следует учитывать также реакцию грунта, действующую на зубья ковша. Величина и направление этой реакции могут быть весьма разнообразны и их влияние на устойчивость экскаватора в целом зависит в первую очередь от вида рабочего оборудования. В наиболее неблагоприятных условиях находится прямая лопата, устойчивость которой при принятых в ГОСТ 518-41 размерных и весовых соотношениях начинает обеспечиваться в полньй мере только для экскаваторов с ковшами 2 и выше.  [c.1176]

Мы видим, что боковые смещения проволоки демпфируются силой Ру, пропорциональной скорости этих смещений с коэффициентом пропорциональности, обратно пропорциональным скорости вращения рабочего валика. Таким образом, устойчивость проволоки должна возрастать с уменьшением скорости вращения (линейной ). С другой стороны, отсутствие в выражении для Ру члена, не зависящего от скорости Уу, является благоприятным, обеспечивая возможность для проволоки после нескольких поворотов валика занять положение устойчивого равновесия. При полном отсутствии сил трения проволока располагалась бы на поверхности валика по геодезической линии.  [c.92]


Смотреть страницы где упоминается термин Устойчивость, виды полная : [c.325]    [c.147]    [c.108]    [c.238]    [c.91]    [c.118]    [c.538]    [c.22]    [c.298]    [c.183]    [c.91]    [c.58]    [c.174]   
Динамические системы (1999) -- [ c.114 , c.124 ]



ПОИСК



Полная устойчивость

Устойчивость, виды



© 2025 Mash-xxl.info Реклама на сайте