Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Число Рейнольдса п его критическое значение

При достижении числом Рейнольдса критического значения на контактной поверхности потока с руслом  [c.168]

Пока число Рейнольдса мало, силы вязкости преобладают над силами инерции и всякие случайно возникающие в жидкости возмущения гасятся силами вязкости. При возрастании числа Рейнольдса до значения, называемого критическим, силы инерции становятся сопоставимыми с силами вязкости и наблюдается переход от,ламинарного режима течения к турбулентному. Например, для жидкости, текущей ио гладкой круглой трубе (в качестве линейного размера / которой взят ее диаметр), Ре -2300. При этом несущественно, за счет чего получается большое значение числа Рейнольдса возрастает ли оно при увеличении линейного размера I пли же скорости течения V, либо за счет малого значения кинематической вязкости. Поэтому число Рейнольдса может служить критерием механического подобия различных потоков.  [c.146]


Рис. 1 показывает изменение Кз в ламинарном пограничном слое в зависимости от расстояния от стенки. На большом расстоянии от стенки его величина стремится к нулю, вблизи стенки — к бесконечности. Изменение знака наступает только для замедленного потока (кривая /). В ламинарном пограничном слое Kz весьма существенно зависит от расстояния от стенки. Критерий Кз имеет особое значение для проблемы устойчивости ламинарного пограничного слоя, так как оказывается, что при критическом значении числа Рейнольдса критическая зона для всех исследованных на сегодня плоских ламинарных пристеночных пограничных слоев лежит в интервале Кз== —5,52 0,47 [6]. Этот интервал установлен на основании обработки профилей скоростей [2, 3 и 5].  [c.185]

Тот или иной режим течения жидкости определяется нижним екр. н и верхним Re p. в критическими числами Рейнольдса. При значениях Re <  [c.56]

Когда число Рейнольдса достигает значения порядка единицы (или критического числа Рейнольдса Кекр, см. детальнее начало 8.1), членом уАу в (8.1) уже пренебрегать нельзя и тогда происходит переход энергии нз кинетической энергии вихря в тепловую, т. е. диссипация энергии.  [c.121]

Ламинарное течение жидкости устойчиво при некоторых условиях, определяемых критическим числом Рейнольдса. При значениях этого числа, больших критического, ламинарное течение становится неустойчивым и переходит в турбулентное. Такой переход связан с возникновением в потоке незатухающих возмущений.  [c.340]

Вычислить значения Ар—Ар дос, построить график Лр=/(Ке) и определить по нему критическое число Рейнольдса, соответствующее значению Ар=1,22.  [c.349]

Как было установлено, характерным для гравитационного движения слоя фактором является число Фруда Кп.сл- На этой основе взамен эмпирического соотношения (9-52) было установлено существование критического значения критерия Фруда, определяющего границу пере.хода одного режима движения слоя в другой аналогично критическому числу Рейнольдса для однофазных сред [Л. 80, 89]  [c.303]

При Re < Re,, , (Re,,., — критическое значение числа Рейнольдса) режим течения ламинарный, при Re >  [c.108]

Определить режим движения при t = 10° С и 7 == 40° С и указать температуру, соответствующую критическому значению числа Рейнольдса (Ре, р = 2300).  [c.119]

Критическим значением числа Рейнольдса для круглых труб будет значение Rei p = 2320, при меньших значениях режим течения ламинарный, при больших — турбулентный.  [c.105]

Обратимся к изучению явлений, возникающих при дальнейшем увеличении числа Рейнольдса, после достижения им критического значения и установления рассматривавшегося в 26 периодического течения. По мере увеличения R наступает в конце концов момент, когда становится неустойчивым и это периодическое движение. Исследование этой неустойчивости должно, в принципе, производиться аналогично изложенному в 26 способу определения неустойчивости исходного стационарного движения. Роль невозмущенного движения играет теперь периодическое движение vo(r, ) (с частотой oi), а в уравнения движения подставляется v = Vo + V2, где V2 —малая поправка. Для 2 получается снова линейное уравнение, но его коэффициенты являются теперь функциями не только координат, но и времени, причем по времени эти коэффициенты представляют собой периодические функции с периодом Т = 2n/ oi. Решение такого уравнения должно разыскиваться в виде  [c.156]


В гидродинамическом аспекте, как уже указывалось, параметр X надо рассматривать как функцию числа Рейнольдса, соответственно чему появляются критические значения послед-  [c.174]

Но в силу (36,2) и (36,4) произведение uR остается постоянным вдоль струи, так что число Рейнольдса одинаково для всех участков струи. В качестве этого числа может быть выбрано отношение Qo/pav. Входящая сюда постоянная Qo/a является тем единственным параметром, который определяет все движения в струе. При увеличении мощности струи Qo (при заданной величине а отверстия) достигается в конце концов некоторое критическое значение числа Рейнольдса, после которого движение делается турбулентным одновременно вдоль всей длины струп 2).  [c.214]

Здесь U p — средняя скорость, d — диаметр трубы.) Это значение является нижней границей критического числа Рейнольдса. При меньших значениях R турбулентное течение не может существовать даже при сильных начальных возмущениях. Если обеспечить вход жидкости в трубу с малыми начальными возмущениями, то критическое число Рейнольдса может превышать значение 100 ООО.  [c.282]

Таким образом, с помощью метода малых возмущений можно получить значение критического числа Рейнольдса. Начиная с того места на пластине, где число Рейнольдса достигает своего критического значения, начинают нарастать возмущения с определенной длиной волны. Далее вниз по потоку становятся неустойчивыми возмущения и с другими длинами волн. Наконец, на некотором расстоянии от начала потери устойчивости ламинарное течение переходит в турбулентное. Критическое число Рейнольдса, определенное экспериментальным путем из наблюдения перехода ламинарного режима течения в турбулентный, соответствует тому месту пластины, где турбулентность потока приводит к перестройке всего течения. Поэтому найденные пз экспериментов критические числа Рейнольдса обычно превышают по величине их теоретические значения.  [c.312]

Результаты экспериментального исследования коэффициента сопротивления в шероховатых трубах при различных значениях относительной шероховатости приведены на рис. 6.43. Эти данные свидетельствуют о том, что относительная шероховатость не влияет на критическое число Рейнольдса, характеризующее начало перехода ламинарного режима течения к турбулентному.  [c.359]

Особенностью электромагнитной объемной силы является то, что в отличие от других объемных сил (силы тяжести, инерционных сил) ею можно управлять, воздействуя на вызывающие ее. электрическое и магнитное поля. Изменяя величину электромагнитной силы, можно влиять на интенсивность и форму ударных волн, увеличивать критическое значение числа Рейнольдса при переходе ламинарного режима течения в турбулентный, замедлять пли ускорять поток электропроводной жидкости (или газа), вызвать деформацию профиля скорости п отрыв пограничного слоя.  [c.178]

ЧИСЛО РЕЙНОЛЬДСА И ЕГО КРИТИЧЕСКОЕ ЗНАЧЕНИЕ  [c.74]

Значение числа Рейнольдса, соответствующее устойчивому пере.ходу от турбулентного режима к ламинарному, называют критическим число.м Рейнольдса Ке, р.  [c.75]

По критическому значению числа Рейнольдса легко можно найти также критическую скорость, т. е. скорость, ниже которой всегда будет иметь место ламинарное движение жидкости  [c.154]

Ламинарный режим течения реализуется при сравнительно малых числах Рейнольдса, меньших некоторого критического значения, называемого критическим числом Рейнольдса Re p. При Re > Re , течение имеет турбулентный характер. Для гладкой пластины Re p составляет более 5 10 , для трубы — около 3000.  [c.369]

Движение жидкости в пограничном слое является ламинарным, если значение числа Рейнольдса, отнесенного к толщине пограничного слоя Ре (б) = ffi)oS/v, меньше некоторой критической величины  [c.375]

Предварительные замечания. Теоретические исследования, имевшие целью объяснить описанное выше явление перехода ламинарного течения в турбулентное, начались уже в прошлом столетии, но к успеху привели только в 1930 г. В основе всех этих исследований лежит представление, чтоI ламинарное течение подвергается воздействию некоторых малых возмущений, в случае течения в трубе связанных, например, с условиями при входе в трубу, а в случае пограничного слоя на обтекаемом теле — с шероховатостью стенки или с неравномерностью внешнего течения. Каждая теория стремилась проследить за развитием во времени возмущений, наложенных на основное течение, причем форма этих возмущений особо определялась в каждом отдельном случае. Решающим вопросом, подлежавшим решению, было установление того, затухают или нарастают возмущения с течением времени. Затухание возмущений со временем должно было означать, что основное течение устойчиво наоборот, нарастание возмущений со временем должно было означать, что основное течение неустойчиво и поэтому возможен его переход в турбулентное течение. Таким путем пытались создать теорию устойчивости ламинарного течения, которая позволяла бы теоретически вычислить критическое число Рейнольдса для заданного ламинарного течения. Предпосылкой для создания такой теории служило впервые высказанное О. Рейнольдсом следующее предположение ламинарное течение, представляя собой решение гидродинамических дифференциальных уравнений и являясь поэтому всегда возможным течением, после перехода через определенную границу, а именно после достижения числом Рейнольдса критического значения, становится неустойчивым и переходит в турбулентное течение.  [c.422]


Переход ламинарного течения в турбулентное зависит от начальной турбулентности. При этом ее повышение приводит к снижению критического числа Рейнольдса. Наибольшее значение этого числа, найденное для шара в свободном полете, при котором начальная турбулентность принимается равной нулю, определяется величиной Reкp = 4-10 . В то же время по экспериментам в аэродинамической трубе с начальной турбулентностью  [c.90]

При малых числах Рейнольдса (Re = 1,35 10 ) коэффициент теплоотдачи при AuqIuo = 4 увеличивался в 3,5 раза по сравнению со стационарным значением, а в области переходного режима течения при Re 3,55-10 всего лишь на 30%. В этих опытах мгновенное максимальное значение числа Рейнольдса превышало значение критического числа Рейнольдса следовательно, структура ламинарного режима нарушалась. Этим и объясняется существенное увеличение коэффициента теплоотдачи.  [c.134]

Решение вопроса о том, какая из обеих теорий правильна, могло быть достигнуто только путем эксперимента. Еще до возникновения теории устойчивости И. М. Бюргере [ ], Б. Г. Ван дер Хегге Цейнен и М. Ханзен произвели измерения ламинарного пограничного слоя и перехода ламинарной формы течения в турбулентную на плоской пластине. Для критического числа Рейнольдса получилось значение  [c.439]

В ламинарных течениях частицы могут выступать как своеобразные дискретные турбулизаторы. Последнее проявляется в определенной дестабилизации, нарушении устойчивости ламинарного течения взвешенными частицами. Это приводит к раннему качественному изменению режима движения. При этом турбулентный режим наступает при числе Рейнольдса зачастую в несколько раз меньшем [Л. 40], чем Некр для чистого потока. Ю. А. Буевич и В. М. Сафрай, объясняя подобный дестабилизирующий эффект в основном межкомпонентным скольжением, т. е. наличием относительной скорости частиц, указывают на существование критического значения отношения полного потока дисперсионной среды к потоку диспергированного компонента, зависящего и от других характеристик, при превышении которого наступает неустойчивость течения. Подобная критическая величина может быть достигнута при весьма малых числах Рейнольдса. Отметим, что критерий проточности Кп (гл. 1) может также достичь высоких (включая и характерных) значений при низких Re за счет увеличения концентрации, соотношения плотностей компонентов и др. Согласно (Л. 40] нарушению устойчивости способствует увеличение размеров частиц и отношения плотностей компонентов системы. Отсюда важный вывод о возможности ранней турбулизации практически всех потоков газовзвеси и об отсутствии этого эффекта для гидро-взвесей с мелкими частицами или с рт/р 1 (равноплотные суспензии).  [c.109]

В настоящей главе предлагаются задачи установившегося ламинарного движения жидкости в плоских н кольцевых зазорах, а также в трубах различной формы поперечного сечения. Можно считать, что ламинарное течеи е в подобного рода трубопроводах и зазорах устанавливается всегда, когда число Рейнольдса Ре = vD/v меньше критического его значения, находящегося в интервале Ре, р 2000- -3000 (здесь —гидравлический диаметр поперечного сечения потока V — средняя по сечению скорость).  [c.187]

Видно, что выше значения Ве г 1 аналитическое описание поля течения усложняется. Становятся существенными инерционные силы, и при Ве 10 происходит отрыв пограничного слоя ) линии тока скручиваются и образуют стационарное вихревое кольцо у кормовой части сферы. Дальнейшее возрастание числа Ве приводит к увеличению размеров и интенсивности вихря. При Ве 100 систе.ма вихрен распространяется за сферой на расстояние около одного диаметра [7801. Влияние инерционных сил продол кает расти, п при Ве 1-50 систе.ма вихрей начинает колебаться. В ла.минарнодг потоке при Ве р 500 систе.ма вихрей отделяется от тела и образует след [822]. Это число Рейнольдса называется нгпкним критическим чпс,лоы Рейнольдса. Вихревые тсольца непрерывно образуются и отделяются от сферы, вызывая периодические изменения поля течения и мгновенной величины силы сопротивления. Линия отрыва пограничного слоя на сфере перемещается, что приводит также к флуктуация.м силы трения.  [c.32]

Такое математическое исследование устойчивости, однако, крайне сложно. До настоящего времени не разработан теоретически вопрос об устойчивости стационарного обтекания тел конечных размеров. Нет сомнения в том, что при достаточно малых числах Рейнольдса стационарное обтекание устойчиво. Экспериментальные данные свидетельствуют о том, что при увеличении R достигается в конце концов определенное его значение (которое называют критическим, R, p), начиная с которого движение становится неустойчивым, так что при достаточно больших числах Рейнольдса (R > Ккр) стационарное обтекание твердых тел вообще невозможно. Критическое значение числа Рей нольдса не является, ралумсстся, универсальным для каждого типа движения существует свое Ккр. Эти значения, по-видимому,— порядка нескольких десятков (так, при поперечном обтекании цилиндра незатухающее нестационарное двгжеиие наблюдалось уже при R — udjy -х. 30, где —диаметр цилиндра).  [c.138]

При числах Рейнольдса, значительно превышающих критическое значение, при обтекании твердого тела потоком жидкости позади тела образуется длинная область турбулентного движения. Эту область называют турбулентным следом. На больших (по сравнению с размерами тела) расстояниях простые соображения позволяют определить форму следа и закон убывания скорости жидкости в нем (L, Prandtl, 1926).  [c.216]

Число Рейнольдса является определяющим параметром не только для количественных характеристик пограничного слоя, но и для самого характера течения. При небольших числах Рейнольдса движение частиц газа имеет упорядоченный слоистый характер, такое течение называется ламинарным. При больших числах Рейнольдса движение частиц газа становится беспорядочным, возникают неравномерные пульсации скорости в продольном и поперечном направлениях, такое течение называется турбулентным. Переход ламинарного течения в турбулентное происходит при определенном значении числа Рейнольдса, называемом критическим. Критическое число Рейнольдса не постоянно и в очень сильной степени зависит от величины начальных возмущений, т. е. от интенсивности турбулентности на-бегагощего потока.  [c.281]


Экспе2эпыентальные исследования перехода ламинарного пограничного слоя в турбулентный на плоской пластине показали, что критическое значение числа Рейнольдса  [c.282]

Ламинарное течение, как показывает опыт, устойчиво только при некоторых условиях, определяемых значением критического числа Рейнольдса. При числах Рейнольдса, больших критического, ламинарное теченпе становится неустойчивым и переходит в турбулентное. Этот переход связан с возникновением в потоке незатухаюш их возмуш ений. Если образующиеся вследствие каких-либо внешних причин возмущения скорости и давления стечением времени затухают, то основное течение считается устойчивым, если же с течением времени они нарастают, то это свидетельствует о неустойчивости основного течения и возможном переходе ламинарного режима в турбулентный. Исходя из такого предположения о природе перехода, можно попытаться определить значение критического числа Рейнольдса с помощью теории устойчивости.  [c.308]

Эти расчеты показали, что критическое число Рейнольдса уменьшается при увеличении числа Мо внешнего потока при отсутствии теплоотдачи от пластины. Охлаждение пластины приводит к увеличению критического числа Рейнольдса при постоянном значении числа Мо, т. е. оказывает стабилизируюш ее влияние на пограничный слой.  [c.312]

На величину критического числа Рейнольдса влияет также интенсивность турбулентности е внешнего потока, определяемая отношением среднего квадратичного значения пульсации скорости к средней скорости. Согласно имеющимся экспериментальным данным, при малых значениях е (е<0,1%) Ккр не зависит от интенсивности турбулентностп внешнего потока, и основной причиной возникновения перехода является потеря устойчивости. При 6 >0,1 % возрастание интенсивности турбулентностп внешнего потока приводит к значительному сокращению ламинарного участка течения (например, при е = 1 % протяженность ламинарного участка на плоской пластине почти в 4 раза меньше, чем при е = 0,1%). Еще более сложным образом на переход влияют масштаб турбулентности и шероховатость обтекаемой поверхности.  [c.314]

Опытные данные показывают, что отвошепие давле1шй в отошедшем косом скачке р ра (критическое отношение давлений) не зависит от способа осуществления и интенсивности основного скачка уплотнения и от числа Рейнольдса, а определяется значением числа Мо внешнего певозмущенного потока. На рис. 6.34 приведены значения отношения давлений в отошедшем косом  [c.345]

Ламинарный режим течения имеет место только при числах Рейнольдса, меньших своего критического значения. Согласно опытам в трубах критическое число Рейнольдса приближенно равно R p = = 2300. Однако несУбходи-мо иметь в виду, что величина R p в значительной мере зависит от условий течения и в первую очередь от начальной турбулентности втекающего потока. В специальных экспериментах, где турбулентность внешнего потока была незначительной, удалось сохранить ламинарный режим течения до значительно больших, чем критическое, значений чисел Рейнольдса.  [c.350]

Ктсдует отметить, что при увеличении чис--ла Рейнольдса выше его критического значения режи.м движения может остаться лами-иариым. Однако это возможно только при соблюдении особых предосторожностей для тщательного успокоения жидкости в резервуаре и недопущении каких-либо возмущении (на.. прнмер, интенсивный пуск краски, сотрясение и т. П.1. Достаточно незначительных возмущений потока, чтобы режим движения в этих случаях перешел в турбулентный. Поэтому в прикладных расчетах будем придерживаться упомянутых значений критического числа Рейнольдса.  [c.75]

В гидротехнической практике условия движения жидкости обычно таковы, что числа Рейнольдса значительно больше упомянутых критических значений, и потому режим движения турбулентный. Например, в канале с Я = = 1,5. м при скорости воды 0 = 0,8 м1сек и кине-  [c.75]

Значение числа Рейнольдса, при котором происходит переход от ламинарного движения к турбулентному, называют критическим числом Рейнольдса и обоз тачают Кскр.  [c.149]

Проведенные исследования показывают также, что критическое значение числа Рейнольдса увеличивается в сужающихся трубах и уменьшается в расширяющихся. Это можно объяснить тем, что при ускорении движения частиц жидкости в сужающихся трубах их тенденция к поперечному перемешиванию уменьшается, а при замедленнолс течении в расширяющихся трубах усиливается.  [c.154]

Если число Рейнольдса больше некоторого критического значения (Re > R kp), to поток движется прн турбулентном режиме, а ири числах Рейнольдса Re < Rbkp устанавливается ламинарный режим.  [c.45]


Смотреть страницы где упоминается термин Число Рейнольдса п его критическое значение : [c.233]    [c.346]    [c.52]    [c.157]    [c.117]    [c.239]   
Смотреть главы в:

Гидравлика  -> Число Рейнольдса п его критическое значение



ПОИСК



Значения критические

Критическое число Рейнольдса

Ламинарный и турбулентный режимы движения жидкости. Число Рейнольдса и его критическое значение

Рейнольдс

Рейнольдса критическое

Число Био критическое

Число Рейнольдса

Число Рейнольдса си. Рейнольдса число



© 2025 Mash-xxl.info Реклама на сайте