Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

ПОЛУЧЕНИЕ ТВЕРДЫХ ТЕЛ

Важным вопросом является зарождение и рост трещин, являющихся причиной хрупкого разрушения. Трещины могут возникать в процессе получения твердого тела и особенно при его механической обработке. Существует несколько возможных механизмов зарождения трещин при приложении к твердому телу механического напряжения.  [c.139]

Переместить полученные твердые тела вверх по оси Z из точки (0,0,0) в точку (0,0,20)  [c.80]


Для этого профиль, представленный на рис. 10.2 цифрой 2, разворачивается в твердое тело, а потом полученное твердое тело вычитается из формируемой крышки. После этого оставшиеся фрагменты выступов уничтожаются.  [c.119]

Что же касается влияния термической предыстории, то оно регулируется теорией пересыщения [240—242], согласно которой активность и обусловленные ею физико-химические свойства твердых тел зависят от того, насколько была далека система от состояния равновесия в момент получения твердых тел, т. е. как велика степень пересыщения системы. Справедливость теории пересыщения была подтверждена экспериментально [243—245].  [c.38]

С течением времени образующийся двуводный гипс кристаллизуется и этим обусловливается получение твердого тела, обладающего достаточной механической прочностью.  [c.104]

В течение последних 30 лет большое число теоретических и экспериментальных работ, имевших своей основой теорию твердого тела, было направлено на получение количественного опи-  [c.271]

При действии на твердое тело системы сил (Fj, F2, / дг) для элементарной работы силы согласно полученным  [c.331]

Твердостью материала называют способность оказывать сопротивление механическому проникновению в его поверхность другого, более твердого тела. Для определения твердости чаще всего в поверхность материала с определенной силой вдавливают тело (инден-тор) в виде шарика, конуса или пирамиды. По размерам полученного отпечатка судят о твердости испытуемого материала.  [c.103]

Полученный результат справедлив только для сил, действующих на абсолютно твердое тело. При инженерных расчетах им можно пользоваться лишь тогда, когда определяются условия равновесия той или иной конструкции и не рассматриваются возникшие в ее частях внутренние усилия.  [c.12]

Принцип отвердевания широко используется в инженерных расчетах. Он позволяет при составлении условий равновесия рассматривать любое изменяемое тело (ремень, трос, цепь и т. п.) или лк>-бую изменяемую конструкцию как абсолютно жесткие и применять к ним методы статики твердого тела. Если полученных таким путем уравнений для решения задачи оказывается недостаточно, то дополнительно составляют уравнения, учитывающие или условия равновесия отдельных частей конструкции, или их деформации (задачи, требующие учета деформаций, решаются в курсе сопротивления материалов).  [c.15]

Из полученного результата легко найти условие равновесия системы пар, действующих на твердое тело при равновесии должно  [c.36]


Этот случай может быть получен как частный из рассмотренного в следующем пункте общею случая движения твердого тела.  [c.302]

Формулы (4.5) —(4.7) находятся в согласии с одним из результатов, полученных в 3.5 в условиях термодинамического равновесия, т.е. при одинаковой температуре, средняя энергия колебания атомов твердого тела = ЗТ вдвое выше средней энергии поступательного движения молекул газа Uf = AT. В 3.5 мы установили также, что среднее значение любого вклада в энергию, квадратичного по одной из координат или по одной из компонент импульса частицы, в равновесном состоянии одно и то же. При нормальных условиях величина этого вклада Uq дается формулой  [c.77]

В книге сделана попытка обобщить и систематизировать литературные данные, а также связать физические свойства материалов, в частности степень черноты, со структурными параметрами твердого тела и с методами получения покрытий. Проведена классификация структур тугоплавких неметаллических соединений и разработана инженерная схема расчета-оценки степени черноты. Полученные  [c.3]

Решая этот определитель, можно вычислить значения частот для данной системы ионов, т. е. для твердого тела. Определитель (2-32) получен при введении одномерной модели кристаллической решетки.  [c.50]

С твердым телом может быть связана геометрическая твердая среда (см. гл. I), т. е. система отсчета. Поэтому все кинематические соотношения, полученные в гл. I для движения одной системы отсчета относительно другой, полностью применимы и к движению твердого тела относительно какой-либо системы отсчета, не связанной с телом. В частности, при движении тела в каждое мгновение существует вектор угловой скорости (о такой, что скорости точек тела распределены по закону г ,-= + и хг,-л, где /4 — произвольно выбранная точка тела, а — радиус-век-тор, проведенный к г-й точке тела из точки А.  [c.167]

Таким образом, из полученной системы ни одно из неизвестных не может быть определено. Рассмотрим поэтому равновесие второй балки СО (рис. в). На балку действует одна активная сила Применяя закон освобождаемости от связей, заменим действие шарнира С и опоры О реакциями связей. Реакция / д направлена по вертикали, перпендикулярно к горизонтальной плоскости, на которую опираются катки. Реакция шарнира С неизвестна по величине и направлению. На основании закона равенства действия и противодействия составляющие этой реакции равны по модулю составляющим реакции щар-нира, приложенным к балке АС, и направлены в прямо противоположные стороны (рис. в). Таким образом, имеем свободное твердое тело—балку СО, находящуюся в равновесии под действием пяти сил. Составим уравнения равновесия, выбрав оси координат с началом в точке С ось абсцисс направим по балке вправо, ось ординат — вертикально вверх. Имеем  [c.72]

Полученный результат подтверждает указание, сделанное в обзоре теории этого пункта, что задача на равновесие твердого тела с двумя закрепленными точками (в данном случае подпятниками А и В), несмотря на соответствие числа неизвестных числу уравнений, является статически неопределенной.  [c.185]

Полученное значение 4 равно сумме момента инерции барабана и искомого момента инерции твердого тела, насаженного на одну ось с барабаном. Следовательно, из полученного значения 4 надо вычесть момент инерции барабана относительно оси д.  [c.220]

Интегрируя полученную систему дифференциальных уравнений движения твердого тела, находим частоты свободных колебаний, главные колебания ротора и общее решение задачи.  [c.625]

Полученные результаты позволяют представить картину движения свободного твердого тела как непрерывную последовательность элементарных перемещений одним из следующих двух способов. Из первой формулировки теоремы Шаля вытекает, что движение свободного твердого тела можно рассматривать как слагающееся из поступательного движения, определяемого движением произвольно выбранного полюса, и из вращательного движения вокруг этого полюса, как вокруг неподвижной точки. В свою очередь движение вокруг неподвижной точки представляет собой непрерывную последовательность бесконечно малых поворотов вокруг мгновенных осей вращения, проходящих через эту точку.  [c.154]


Движение твердого тела называется плоским, если все точки тела перемещаются в плоскостях, параллельных некоторой неподвижной плоскости. Плоское движение твердого тела вполне определяется движением фигуры, полученной при  [c.28]

Всякая данная система сил, действующих на твердое тело, и другая система, полученная из данной путем присоединения или отбрасывания уравновешенной системы сил, оказывает на твердое тело совершенно одинаковое действие. Обе эти системы эквивалентны.  [c.22]

Зная моменты внешних сил, приложенных к вращаюш,емуся твердому телу, можно найти вторую производную от угла поворота по времени. Интегрируя полученное уравнение, можно выразить угол поворота ф как функцию времени t и определить вращение тела. Конечно, при интегрировании появятся две постоянные, которые надо определить по начальным данным, т. е. по начальным значениям ф и ф.  [c.156]

Пример 1.7.1. Предположим, что к точкам приложены параллельные скользящие векторы силы тяжести и,- = т д]и, где д — ускорение свободного падения, к — единичный вектор вертикали. Тогда центр масс дает точку приложения результирующего вектора таких сил. Вследствие того, что центр масс не зависит от ориентации вектора к, существует простой способ экспериментального определения расположения центра масс в твердом теле, рассматриваемом как множество точечных масс. Подвесим такое тело на нити, закрепив ее в какой-либо точке тела. После того как тело перестанет качаться, отметим в нем прямую, служащую продолжением нити. Центр сил тяжести (см. 1.6) совпадает с центром масс, и поэтому центр масс обязан принадлежать полученной прямой. Закрепим теперь нить в другой точке тела и повторим операцию. Тогда центр масс будет точкой пересечения этих прямых.О  [c.42]

Определение 4.8.1. В данной совокупности сил 5 заменим все силы равными им по модулю и противоположными по направ.пе-нию. Полученную совокупность обозначим 3. Две совокупности сил 5] и 32 называются эквивалентными, если составная совокупность 51 У52 или 51 и 52, будучи приложенной к твердому телу, оставляет его в равновесии.  [c.354]

Полученная система уравнений движения носит название системы уравнений Лагранжа второго рода. В дальнейшем будет показано, что к такой форме приводятся дифференциальные уравнения для лагранжевых координат произвольной голономной системы материальных точек. В случае движения абсолютно твердого тела первые три обобщенные силы имеют смысл проекций суммарной силы на оси абсолютного репера, а последние три — моментов сил относительно осей е, , е ,, соответственно.  [c.453]

Вместе с тем, физико-химическая механика решает проблему получения твердых тел и структурированных систем, а также строительных и конструкционных материалов с заданными. механическими свойствами и структурой и проблему оптималы. ых методов их обработки (давлением, резание.м, измельчением).  [c.24]

Частный вид уравнения (6-3.25) был получен Бернстейном, Керсли и Запасом [8] на основе физической гипотезы, включаюш,ей в себя функцию упругой энергии. Эта теория, называемая БКЗ-теорией, предваряет общее термодинамическое рассмотрение, сделанное Колеманом, и представляет собой попытку распространить на материалы с памятью некоторые хорошо известные концепции, относящиеся к идеально упругим твердым телам.  [c.222]

Рассмотрены процессы повреждения и разрушения материалов и элементов конструкций и формулировки критериев разрушения на основе подхода, включаюшего механику деформируемого твердого тела, механику разрушения и физику прочности и пластичности. Приведены подходы к описанию кинетики трещин при статическом, циклическом и динамическом нагружениях элементов конструкций. Рассмотрены методы и алгоритмы численного решения упруговязкопластических задач при квазистатическом (длительном и циклическом) и динамическом нагружениях. Основу книги составили результаты, полученные авторами.  [c.2]

Учет неоднофазности среды, в частности, фазовых переходов, требуется при изучении распространения сильных ударных волн в твердых телах, возникающих при взрыве и вызываюш,их ряд физико-химических превращений. Сюда относится изучение взрыва в различных породах (начальной стадии взрывной волны), столкновений тел с большими скоростями (порядка 1—10 км1сек), получение новых веществ методами ударного обжатия, изменение свойств металлов ударно-волновой обработкой и т. д.  [c.12]

При рассмотрении равновесия сил, приложенных к системе тел, можно мысленно расчленить систему тел на отдельные твердые тела и к силам, действующим на эти тела, применить условия равновесия, полученные для одного тела. В эти условия равновесия войдут как внешние, )ак и внутренние силы системы 1ел. Внутренние силы на основании аксиомы о paeefr ree сил действия и противодействия в каждой точке сочленения двух тел образуют равно- сную систему сил (силы R,i и рис. 45). Поэтому  [c.55]

Пористые высокогеплопроводные металлы используются также и при изготовлении теплообменников сосредоточенного теплообмена (дискретного типа) для получения сверхнизких температур. Предельно развитая поверхность теплообмена пористой структуры позволяет уменьшить граничное термическое сопротивление Калицы, вызывающее температурный скачок на границе раздела жидкость - твердое тело, через которую передается теплота. Такой теплообменник представляет собой блок, содержащий две камеры, заполненные проницаемым высокотеплопроводным материалом с большой удельной поверхностью Обьпшо и пористая матрица и блок выполняются из меди. При растворении Не в Не на пористой насадке в одной из камер температура получаемой смеси может понизиться до 0,011 К. За счет этого происходит охлаждение всего блока и протекающего через другую камеру потока Не .  [c.17]


Из полученных результатов следует, что для твердого тела, находящегося в однородном поле тяжести, положения центра масс и центра тяжести совпадают. Но в отличие от центра тяжести понятие о центре масс сохраняет свой смысл для тела, находящегося в любом. силовом поле (йапример, в центральном поле тяготения),  [c.265]

Предположим, что твердое тело совершает плоское движение. Совместим с плсЗскостью чертежа плоскость, в которой движется центр масс тела, показав плоскую фигуру, полученную от сечения тела этой плоскостью (рис. 196). В динамике за полюс принимают не произвольную точку фигуры, а центр масс тела. Тогда уравнения движения плоской фигуры имеют вид  [c.232]

Действие излучения на материалы. При оценке действия радиации на твердое тело констатируется изменение какого-либо свойства или ряда свойств тела, соответствующее определенной степени воздействия излучения, которую характеризуют дозой облучения. Доза — количество энергии, полученное единицей массы вещества в результате облучения. Взаимодействие излучений с твердым телом представляет собой сложное явление, которое в общем случае сводится к следующему возбуждение электронов, возбуждение атомов и молекул, ионизация атомов и молекул, смещение атомов и молекул с образованием парных дефектов Френкеля. Кроме того, в результате воздействия излучений возможны ядерные и химические превращения, а также протекание фотолити-ческих реакций. Все это приводит к уменьшению плотности, изменению размеров, увеличению твердости, повышению предела текучести, уменьшению электросопротивления, изменению оптических характеристик тела. Знание изменений свойств под действием облучений особенно важно при создании ядерно-энергетических установок, ряда устройств космических аппаратов [52]. Покрытия в космическом пространстве испытывают воздействие радиации, состоящей из электромагнитного излучения и потока частиц. Каждое  [c.181]


Смотреть страницы где упоминается термин ПОЛУЧЕНИЕ ТВЕРДЫХ ТЕЛ : [c.56]    [c.72]    [c.92]    [c.30]    [c.70]    [c.42]    [c.205]    [c.306]    [c.163]    [c.123]    [c.87]    [c.6]    [c.83]   
Смотреть главы в:

Лекции по физике твердого тела Принципы строения, реальная структура, фазовые превращения  -> ПОЛУЧЕНИЕ ТВЕРДЫХ ТЕЛ



ПОИСК





© 2025 Mash-xxl.info Реклама на сайте