Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Момент в молекулах типа симметричного

Для симметричного волчка или линейной молекулы электронно-колебательные (вибронные) уровни энергии можно классифицировать по значениям квантового числа ЙГ — Л + 2 проекции вибронного угл. момента на ось симметрии М. Электронно-колебат. взаимодействие снимает вырождение но Л и 2, и вибронные уровни энергии расщепляются. В М. типа симметричного и сферич. волчков линейные члены разложения электронного гамильтониана по координатам вырожденных колебаний не равны нулю, расщепление виб-ронных уровней в этом случае наз. линейным эффектом Яна — Теллера (см. Вибронное взаимодействие). Энергия расщеплённых подуровней даётся ф-лой  [c.189]


Для молекул вследствие Ш. э. происходит расщепление вращательных уровней энергии, причём для молекул типа симметричного волчка, обладающих пост, дипольным моментом примером является молекула аммиака NH3), характерен линейный Ш. э. Для таких молекул методом ЭПР в молекулярных пучках, аналогичным методу ЯМР, могут наблюдаться переходы между подуровнями штарковского расщепления и с большой точностью определяться величины дипольных моментов.  [c.475]

В молекулах типа сферического волчка все три главных момента инерции одинаковы, поэтому формула вращательных энергетических уровней (в нулевом приближении) даже проще, чем для молекул типа симметричного волчка, а именно  [c.101]

Характер колебательно-вращательного спектра у молекул типа симметричного волчка сложнее, чем у линейных молекул и молекул типа сферического волчка, в особенности если направление дипольного момента не совпадает с осью молекулы.  [c.11]

Первое условие выполняется для гексафторидов вследствие идентичности строения их молекул. Известно, что молекулы этих соединений, относящиеся к типу A Fg, неполярны и имеют форму правильного неискаженного октаэдра с атомом элемента в центре и атомами фтора в его вершинах. Параметры октаэдра (межатомные расстояния X — YI) для большинства гексафторидов точно измерены и имеют множитель подобия а = = 1И, близкий к единице с разбросом в пределах 8% [9]. По своей структуре молекулы гексафторидов относятся к типу симметричный волчок , у которого моменты инерции по трем осям равны друг другу и имеют для всех соединений близкие значения с разбросом в пределах 10—15% [9]. Это свидетельствует о выполнимости для данной группы соединений четвертого условия подобия.  [c.98]

Однако не всякая симметричная молекула обладает неактивными колебаниями. Например, в нелинейной симметричной молекуле типа ХУ (скажем, в молекуле Н,0) все три нормальных колебания (см. фиг. 25, а) связаны с изменением дипольного момента, т. е. они являются активными в инфракрасном спектре. С другой стороны, молекула такого типа, как Х УЕ , принадлежащая к той же точечной группе имеет одно неактивное колебание, а именно, крутильное колебание атомов Х относительно атомов 2 . В этом случае дипольный момент в положении равновесия отличен от нуля, но при малых амплитудах крутильных колебаний дипольный момент не меняется ни по направлению, ни по величине, в противоположность тому, что происходит при всех других колебаниях.  [c.260]


По квантовой теории, как и по классической теории, появление некоторой основной частоты в инфракрасном или комбинационном спектре, определяется изменением дипольного момента или поляризуемости соответственно, поэтому сделанные ранее выводы (раздел 1) о зависимости появления частоты от свойств симметрии молекулы остаются в силе и в квантовой теории. Так, например, в случае линейной симметричной молекулы типа ХУ в комбинационном рассеянии квантовое число может изменяться на 1 только для полносимметричного колебания 7), тогда как в инфракрасном спектре квантовые числа могут изменяться на 1 только для колебаний 7, и Уд. Обратно, если трехатомная молекула типа ХУ имеет только одну (стоксову) комбинационную линию и только две интенсивные инфракрасные полосы, частоты которых отличны от частоты комбинационной линии, то отсюда можно заключить, что молекула является линейной и симметричной, так как и для нелинейной и для линейной несимметричной молекулы типа ХУ все три основные частоты активны как в инфракрасном, так и в комбинационном спектрах.  [c.271]

В случае почти одинаковых частот v.2 и при первоначальном возбуждении одной из частот происходило бы в силу кориолисова взаимодействия и сильное возбуждение другой частоты. Однако это возбуждение будет очень слабым, если, как это имеет обычно место, частоты колебаний и V, зна- чительно разнятся между собой. Следствие кориолисова взаимодействия в любом случае будет то, что во вращающейся системе координат при возбуждении, например, колебания Уд атомы будут двигаться не по прямым, а по эллипсам, тем более вытянутым, чем меньше взаимодействие, т. е. чем меньше скорость вращения или чем больше отличаются друг от друга частоты колебаний у, и Уд. На фиг. 101 показано движение атомов для трех основных колебаний линейной симметричной молекулы типа ХУ . Так как для каждого рассматриваемого колебания каждый атом описывает эллипс с тем же направлением вращения, то, очевидно, возникает добавочный колебательный момент количества движения, что приводит к изменению энергии.  [c.403]

Как мы видели ранее, если для перпендикулярного колебания (тип симметрии П) Б линейной молекуле возбужден один квант, то в качестве двух составляющих движения мы можем выбрать либо а) колебания в двух взаимно перпендикулярных плоскостях, либо б) круговые колебания по часовой стрелке и против часовой стрелки вокруг оси симметрии (см. фиг. 27, а) с моментами количества движения 1== . Если в первом случае молекула вращается, то при колебании в плоскости aJ, параллельной оси вращения, не будет происходить изменения момента инерции молекулы, пока колебания являются гармоническими, так как ядра движутся параллельно оси вращения. Однако для колебания, совершающегося в плоскости а -, перпендикулярной оси вращения, момент инерции относительно оси будет изменяться, так как он слагается из начального момента инерции и момента инерции относительно оси симметрии молекулы (который для смещенной конфигурации молекулы не равен нулю). Таким образом, для двух составляющих колебаний следует ожидать несколько отличающихся между собой эффективных значений постоянной В. Если применять схему б), то при колебании атомов вокруг оси симметрии мы получим по существу такую же картину, как и для молекулы со слегка изогнутой равновесной конфигурацией, т. е. мы получим слегка асимметричный волчок, для которого снято вырождение уровней с характерное для соответствующего симметричного волчка, причем расщепление этих уровней увеличивается с увеличением вращательного квантового числа J (см. фиг. 18). В данном случае К идентично I. Таким образом, согласно любой из схем, а) или б), мы должны ожидать удвоения на основании того, что при смещении атомов молекула становится слегка асимметричным волчком.  [c.406]

При р = 1 (/д = /д) полоса типа В, разумеется, тождественна полосе типа А. В случаях, близких к этому предельному случаю, полоса типа В, наблюдаемая при средней дисперсии, все еще будет состоять из некоторого числа приблизительно равноудаленных линий. При промежуточных значениях р структура полосы очень сложна, но по мере приближения к противоположному предельному с тучаю (р мало) мы снова имеем приблизительно симметричный волчок 1с = 1а Ь 1в- Однако в данном случае направление изменения дипольного момента перпендикулярно оси почти симметричного волчка и потому полоса типа В в отличие от полосы типа А будет иметь структуру перпендикулярной полосы симметричного волчка. Все это ясно видно при сравнении спектра в верхней части фиг. 156 и спектра, приведенного на фиг. 128. В предельном случае р = О мы получаем перпендикулярную полосу линейной молекулы, т. е. остается только одна из подполос (с ветвями Р, Q и / ) в верхнем ряду фиг. 156.  [c.508]


Поскольку магнитный дипольный момент — аксиальный вектор, его компоненты имеют те же типы симметрии, что и компоненты вращения Нх, Ву, В г (приложение I). Электрический квадрупольный момент — тензор, компоненты которого ведут себя подобно компонентам поляризуемости, т. е. как произведение двух трансляций. Следовательно, можно пользоваться данными табл. 55 тома II ([23], стр. 274) для типов симметрии составляющих хж, < х(/,. ... Например, для симметричных линейных молекул (точечная группа 1)ос ) компоненты магнитного дипольного момента относятся к типам симметрии и П , а компоненты электрического квадрупольного момента — к типам симметрии Е , Пg, Ад. Следовательно, для того чтобы данный переход был разрешенным для магнитного дипольного излучения, произведение электронных волновых функций верхнего и нижнего состояний должно относиться к тинам 2 или П . Так, при поглощении из полносимметричного основного состояния могут происходить переходы 2 — 2 , П — 2 . Аналогично нри переходах, разрешенных для электрического квадрупольного излучения, произведение волновых функций должно относиться к одному из типов симметрии 2 , П , или А . При поглощении из полносимметричного основного состояния могут иметь место переходы 2 — 2 , Пд — 2д и Ай — 2 .  [c.134]

У многоатомных молекул спектры значительно усложняются. В частности, у линейных многоатомных молекул, энергетические спектры которых выражаются формулами (63.30), правила отбора для п и / при различных типах переходов различны и зависят от того, параллелен или перпендикулярен оси молекулы ее осциллирующий электрический дипольный момент. Если дипольный момент параллелен оси молекулы, то правила отбора для мод колебаний атомов вдоль оси имеют вид Аи = +1 (или Аи = = +1, +2, 3,. .. при учете ангармоничности) и А/ = +1, как и в (63.31) и (63.32). Такие колебания молекулы СО2 показаны на рис. 96. При симметричных колебаниях дипольный момент молекулы СО 2 остается равным нулю, а при асимметричных колебаниях имеется изменяющийся во времени дипольный момент, параллельный оси симметрии молекулы, который и обеспечивает спектр излучения, аналогичный спектру излучения двухатомной молекулы. При изгибных колебаниях (рис. 96) электрический дипольный момент направлен перпендикулярно оси молекулы. Правила отбора при этом имеют вид Аи = 1, А/ = О, + 1. Правило отбора А/ = О обеспечивает появление в спектре линии с частотой Юц, принадлежащей 2-ветви.  [c.323]

Если собственный дипольный момент не ориентирован в направлении оси волчка (что возможно лишь для молекул, случайно являющихся симметричными волчками), то, кроме переходов с ДЛГ=0, возможны также переходы с ДЛ = 1, причем переходы первого типа соответствуют составляющей дипольного момента, параллельной оси волчка, переходы второго типа — составляющей, перпендикулярной оси волчка. Эго приводит, конечно, к возникновению значительно более сложного спектра. Мы не будем его рассматривать, так как до сих пор ни один такой спектр еще не был наблюден.  [c.44]

Главные полосы изогнуто-линейных переходов. Если молекула нелинейна в возбужденном состоянии, то она, разумеется, относится к типу асимметричного волчка. Поэтому нужно рассмотреть переходы между уровнями асимметричного волчка и вращательными уровнями линейной молекулы. Рассмотрим сначала случай, когда молекула в возбужденном состоянии близка к вытянутому симметричному волчку (хотя, строго говоря, она является асимметричным волчком) и когда вполне определено квантовое число К момента количества движения относительно оси фигуры. В этом случае положение вращательных уровней может быть описано формулой (1,146) для почти симметричного волчка. В нижнем состоянии квантовое число К определяется только электронным и колебательным моментами количества движения, т. е. " = " А" , и если в основном состоянии Л = О, то К" = Г.  [c.193]

Мо.текулы типа сферич. волчка (У.,. = ]у -— ие об,надают врал1,ат. спект1)ами и но представляют интереса для С. м. В молекуле типа симметричного вол 1-ка два из трех моментов инерции совпадают. Симметричный полчок иаз, вытянутым, если  [c.31]

Если бы не было эффектов более высокого порядка, уровни Ai и А2 при данных J ж К имели бы одинаковую энергию точно так же, как две компоненты уровней с данным J в электронно-колебательном состоянии П линейной молекулы. Когда возбуждено вырожденное колебание v , из-за кориолисова взаимодействия или просто из-за колебательно-вращательного взаимодействия возникает расщепление уровней на две компоненты, которое называется -удвоением, несмотря на то что в молекулах типа симметричного волчка в отличие от линейных молекул момент количества движения (колебательный) равен не (hl2n), а Сг h 2n) (см. стр. 67). Гаринг, Нильсен и Pao [406] показали, что точно так же, как в линейных молекулах, при А = 1 удвоение в первом хорошем приближении равно  [c.97]

Осн. колебат. полосы линейной многоатомной молекулы, соответствующие переходам из осн. колебат. состояния, могут быть двух типов параллельные ( ) полосы, соответствующие переходам с дипольным моментом перехода, направленным по оси молекулы, и перпендикулярные (i) полосы, отвечающие переходам с дипольным моментом перехода, перпендикулярным оси молекулы. Параллельная полоса состоит только из Я- и Р-ветвей, а в перпендикулярной полосе разрешена также и -ветвь (рис. 2). Спектр осн. полос поглощения молекулы типа симметричного волчка также состоит из II и 1 полос, но вращат. структура этих полос (см. ниже) более сложная -ветвь в 1 полосе также не разрешена. Разрешённые колебат. полосы обозначают V j. Интенсивность полосы Vj. зависит от квадрата производной (ddJdQji) или (da/dQ ) . Если полоса соответствует переходу из возбуждённого состояния на более высокое, то её наз. горячей.  [c.202]


Почти у всех молекул в основном электронном состоянии суммарный механик. момент электронов равен нулю н магн. С. с. колебательно-вращат. уровней энергии гл. обр. связана с вращением молекулы. В случае двухатомных, линейных многоатомных молекул и молекул типа симметричного волчка (см. Молекула), содержащих одно ядро со спином I на оси молекулы,  [c.459]

Под действием электрич. поля расщепляются но только электронные уровни атомов и молекул, но и вращат. уровни молекул, обладающих постоянным дипольным моментом (рис. 2). Для молекул типа симметричного волчка наблюдается Ш. я., пропорциональное нолю, а для молекул тина асимметричного волчка и линейных — квадратичная зависимость. Ш. я. лежпт в основе одного из наиболее точных методов определения дипольных моментов молекул. Под действием переменного электрич. ноля получается расщепление вращат. линий, периодически меняющееся со временем, что используется для модуляции частоты в микроволновой спектроскопии — т. и. 1нтар-ковская модуляция, О расщеплении уровней в кристаллах см. Спектроскопия кристаллов.  [c.425]

Здесь точно так же, как в случае молекул типа симметричного волчка, С обозначает либо чисто колебательный момент количества движения (когда электронное состояние не вырождено), либо чисто электронный момент количества движения (когда электронное состояние вырождено, но выро-  [c.104]

Как и в случае молекул типа симметричного волчка, структура полос молекул типа асимметричного волчка ири запрещенных электронных переходах, которые становятся возможными в результате электропно-колебатель-ного взаимодействия, совершенно такая же, как и при разреигепных переходах направление момента перехода и, следовательно, структура полос определяются электронно-колебательной симметрие верхнего и нижнего состояний.  [c.265]

Расщепление Штарка. Если у молекулы типа симметричного волчка имеется постоянный электрический дипольный момент, то, как было показано в гл. I, разд. 4, расщепление энергетических уровней в электрическом поле в первом приближении должно быть точно таким же, как и в магнитном поле. Поскольку правила отбора одинаковы, штарковские компоненты лишш в электрическом иоле такие же, как компоненты в магнитном поле. Расщепление линий в Р-, Q- ж Л-ветвях должно происходить соответственно на 3(2/ + 1), 3(2/) и 3(2/ — 1) компонент. Полное расщепление, за исключением линий с самыми низкими значениями /, дается выражением  [c.274]

В молекулах чисто вращательные переходы подчиняются О. п. для изменения проекции полного утл. момента (характеризуется квантовым числом К) на выделенную ось симметрии молекулы. Так, для молекул типа жёсткого симметричного волчка Д7С = 0 в поглощении. Однако центробежное искажение и эффекты колеба-тельно-вращат. взаимодействия еибронного взаимодействия) существенно ослабляют это О. п. В частности, в спектрах молекул симметрии Сз в осн. состоянии разрешаются переходы с АК = 3, 6 ит. д. (вероятность переходов с АК — 6 на 4 порядка меньше, чем переходов с АК — 3), а в вырожденных вибронных состояниях возможны и переходы с АК = 1, 2 и т. д. Для молекул типа асимметричного волчка О. п. по АК теряют смысл.  [c.487]

В отсутствие резонансов вычисление поправок на центробежное искажение и кориолисово взаимодействие методом возмущений приводит к эффективному вращательному гамильтониану или уотсониану [113, 118, 133, 134, 136 ], в котором последовательные члены содержат вторую, четвертую, шестую и т. д. степени компонент оператора углового момента. Эффективный вращательный гамильтоииан коммутирует с операциями молекулярной группы вращений и в отсутствие резонансов между состояниями, вызываемых центробежным искажением или корнолисовым взаимодействием, число К остается приближенным квантовым числом для симметричного волчка, а неприводимые представления группы D2 дают хорошую классификацию уровней асимметричного волчка. Для молекул типа сферического волчка центробежное искажение и кориолисово взаимодействие приводят к важному явлеиию частичного расщепления (2/+ 1)-кратного вырождения по k каждого уровня. Максимальное число расщепленных компонентов равно полному числу неприводимых представлений группы МС, входящих в приводимое представление Frv. Например, вращательный уровень с / = 18 основного колебательного состояния молекулы метана состоит из уровней с различными типами симметрии группы МС (см. табл. 10.14)  [c.331]

Для линейных симметричных молекул типа XY Адель и Деннисон [37] (см, небольшие поправки в работе Деннисона [280]) нашли выражение для и g-jj через потенциальные постоянные при членах третьей и четвертой степени и через (О,- и моменты инерции. Аналогичные выражения для линейных молекул XYZ получены Аделем [33] и Нильсеном [б54а]. Истинные значения постоянных ангармоничности л ,,, и молекул СО и H N, определенные из наблюденных инфракрасных и комбинационных частот, будут приведены в гл. III.  [c.231]

Примеры. Три нормальных колебания У), и Уд неплоской симметричной молекулы типа ХУ. (точечная группа С г,) принадлежат к типам симметрии Ах, Ах и Вх соответственно (см. фиг. 25, а и табл. 13). Поэтому, согласно табл. 55, все они являются активными в качестве основных колебаний в инфракрасном и комбинационном спектрах. В частности, колебания VJ и обнаруживаются в инфракрасном спектре при изменении дипольного момента в направлении оси г (совпадающем с направлением оси симметрии второго порядка), колебание же Уд обнаруживается при изменении дипольного момента в направлении оси л в соответствии с результатами, полученными классическим путем (стр. 260). В комбинационном спектре при колебаниях VI и отличны от нуля только, составляющие [о1ххГ ", и [Огг)" тензора поляризуемости, при колебании -только  [c.280]

Определение междуатомных расстояний явление изотопии. Чрезвычайно важными данными при решении вопроса о геометрической структуре линейных молекул являются данные о междуатомных расстояниях. Однако лишь в случае симметричных линейных молекул типа XY (точечная группа D oh) возможно непосредственно определить междуатомные расстояния только из момента инерции молекулы. Это обусловливается тем, что в данном случае два междуатомных расстояния равны между собой и момент инерции молекулы будет просто равняться 1 =2т г . Именно таким. методом междуатомные расстояния в молекулах СО и S. , приведенные в табл. 130, были непосред-  [c.424]

Для всех других молекул, помимо симметричных линейных молекул типа ХУа, при наличии двух или нескольких различных междуатомных расстояний их, разумеется, нельзя определить только из одного момента инерции.В этих случаях недостающее уравнение (или уравнения) можно получить, изучая спектры изотопных молекул. При этом можно сделать единственное предположение, что для изотопных молекул остается неизменной потенциальна функция, и следовательно, и междуатомные расстояния. Это предположение оправдалось в большом числе случаев при изучении явления изотопии для колебаний многоатомных молекул (см. гл. II, раздел 6) и особенно при изучении явления изотопии для вращения и колебания двухатомных молекул. Ва всех изотопных двухатомных молекулах, за исключением двухатомных молекул с низкими возбужденными электронными уровнями (для которых теоретически следует ожидать небольшую разницу порядка 0,001 10" см в междуатомных расстояниях), междуатомные расстояния, как и следует ожидать ), равньг в пре делах ошибок измерений ( 0,0002- 10 см). Так как рассматриваемые здесь-линейные многоатомные молекулы не имеют низких электронных уровней, то-можно с уверенностью считать, что междуатомные расстояния изотопных молекул являются одинаковыми с точностью, значительно большей, чем 0,001 Ю см. Следует иметь в виду, что такого точного совпадения можн ожидать только для равновесных расстояний г для средних (эффективных) междуатомных расстояний Го в нижнем колебательном уровне столь точного совпадения не будет, так как различные изотопные молекулы имеют различные амплитуды нулевого колебания. Однако даже и расстояния Гд будут равны с точностью, большей чем 0,002-10 см ).  [c.425]


Изложенные выше соображения применимы как к случаю молекулы, являющейся симметричным волчком в силу своей симметрии (как, например, молекулы КНз и молекулы галоидозамещенных метана), так и к случаю несимметричной молекулы, для которой два главных момента инерции случайно равны друг другу. Сильвер и Шефер [790] и Шефер [776] с помощью квантовой механики более строго доказали справедливость формул (4,38) и (4,39) для плоских и пирамидальных молекул ХУд. То же самое было выполнено Шефером [777] для случая молекул типа Х 2д с аксиальной симметрией и Нильсеном [666] — для общего случая. Эти авторы также дали точные формулы для и а , выраженные через потенциальные постоянные и геометрические параметры молекулы. Аналогично случаю линейных молекул, постоянные а,- слагаются из трех частей гармонической, ангармонической и части, обусловленной кориолисовым взаимодействием [см. уравнение (4,12)]. Сильвер, Шефер и Нильсен также наи ли, что в правые части выражений (4,38—39) необходимо добавить постоянные члены — и —а . Однако эти члены имеют тот же порядок величины, что и вращательные постоянные йу и поэтому практически ими можно всегда пренебречь ).  [c.429]

Крутильные колебания симметричных молекул типа СоНб или С Н, неактивны в инфракрасном спектре. Очевидно, что это будет справедливо также и для свободного внутреннего вращения, т. е. для предельного случая полного отсутствия потенциального барьера, так как при таком движении не будет происходить никакого изменения дипольного. момента, Другими словами, не будет наблюдаться чисто вращательный спектр, соответствующий свободному внутреннему вращению. То же мы имели и этих молекул.  [c.527]

В случае перпендикулярных полос каждая подполоса также будет состоять из нескольких подполос, по две на каждое значение нижнего состояния (так как Д/Г( = 1). Ввиду того Что для молекул типа СаН8 доля энергии, определяемая внутренним вращением, согласно (4,118), равна АК , структура подполосы (с заданным значением К и ДЛ") вполне подобна структуре полной перпендикулярной полосы при отсутствии свободного вращения (фиг. 128). Разница состоит только в том, что расстояние между ветвями Q, вырожденными в линии, равно 2А, а не 2 (Л — В). Действительно, как мы видели раньше (стр. 457), интервал между подполосами равен 2Л(1—С,) — 23 в силу взаимодействия составляющих вдоль оси волчка вращательного и колебательного моментов количества движения. Точно так же, согласно Говарду (см. выше), расстояние между подполосами в силу взаимодействия внутренних вращательного и колебательного моментов количества движения (если, как это часто бывает, верхнее состояние типа симметрии Е случайно совпадает с одним из состояний типа симметрии Е") равно 2Л(1—С,). Таким образом, в перпендикулярной полосе молекулы, являющейся симметричным волчком и обладающей свободным внутренним вращением, каждая из вырожденных в линии ветвей Q фиг. 128 будет расщеплена на ряд почти равноотстоящих линий с интервалом 2В (пренебрегая зависимостью Л и й от к). Такая структура полос до сих пор не обнаружена.  [c.528]

Вращательные уровни для вырожденных колебательных уровней невырожденных синглетных электронных состояний. В вырожденных колебательных состояниях (которые существуют для всех молекул, действительно относящихся к типу симметричного волчка) при вращении молекулы корио-лисовы силы приводят к снятию вырождения (Теллер и Тиса [1198) и Теллер [11961), причем расщепление уровней в первом приближении возрастает линейно с увеличением квантового числа К (см. [23], стр. 429). Это расщепление обусловлено тем, что момент количества движения относительно оси волчка Khl2n представляет собой сумму вращательного и колебательного членов. Последний равен /i/2n (см. стр. 67), и поэтому вращательный член равен К ) hl2n, где знак минус ставится, когда колебательный момент параллелен вектору К, а знак плюс — когда он антинараллелеп. Поэтому в формулах вращательной энергии (1,102) и (1,106) надо заменить АК на А (К и СК на С К ц- соответственно. Эта замена означает, что к уравнению (1,102) для вытянутого волчка надо прибавить член  [c.87]

Спиновое расщепление. Молекулы типа асимметричного волчка в отличие от молекул тина симметричного (или сферического) волчка и линейных не могут иметь электронного орбитального момента количества движения, и поэтому у них, как правило, небольшое расщепление уровней, обусловленное ненулевым электронным спином. Такое расщепление может быть неносред-ственпо вызвано только взаимодействием спина с очень слабым магнитным моментом, появляющимся нри вращении молекулы как целого. Однако существует также косвенное влияние связи спина 8 с орбитальным моментом L, даже несмотря на то, что последний в среднем равен нулю (т. е. даже несмотря на то, что равны нулю диагональные элементы момента X).  [c.116]

Было подробно изучено несколько случаев перпендику,тярных полос молекул типа слегка асимметричного волчка. В частности, хорошим примером может служить перпендикулярная полоса радикала HN N, фотография которой приводится на фиг. 108. В данном случае вращательные постоянные верхнего п нижнего состояний почти одинаковы. По этой причине, а также из-за очень малой асимметрии молекулы полоса очень похожа по своей структуре на схематический спектр симметричного волчка, приведенный на фиг. 99 наблюдается ряд почти эквидистантных ( -ветвей, похожих по внешнему виду на отдельные линии. Между ними имеется тонкая структура, обусловленная Р- и 2 -ветвями. Эти полосы поглощения являются типичными перпендикулярными полосами, в точности подобными перпендикулярным инфракрасным полосам. Очень большое расстояние между -ветвями АО см ) и уменьшение этого расстояния в два раза в случае дейтерировапного соединения говорит о том, что небольшая величина момента инерции /4 обусловлена почти исключительно атомом Н. В соответствии с этим следует предположить, что атом Н находится вне оси линейной группы N N. Применение приборов с более высоким разрешением позволило довольно полно разрешить некоторые подполосы и определить описанным выше способом все три вращательные  [c.258]

Тензор поляризуемости в (11.190) симметричен и шесть независимых компонент этого тензора преобразуются как симметричная часть квадрата представления группы МС, по которому преобразуются компоненты Мх, Му, Мг оператора электрического дипольного момента. Поэтому правила отбора, следующие из условия отличия от нуля выражения (11.190), более ограничены, чем правила отбора, следующие из условия отличия от нуля выражения (11,189) (см., например, [78]). Выражение (11.190) отлично от нуля, если выполняется условие (ф I IФ ) =7 О (которое дает правила отбора по вращательным квантовым числам) и если произведение типов симметрии колебательных состояний содержит симметричную часть квадрата типа симметрии компонент (Мх, Му, Мг) оператора дипольного момента. Колебательная часть выражения (11.189) отлична от нуля, если произведение типов симметрии колебательных состояний содержит полный квадрат типа симметрии Мх, Му, Мг. Например, для молекулы с симметрией Сзу компоненты Мх, Му, Мг преобразуются по представлению i0 , квадрат которого равен 2 i0/l2 3 , а симметричная часть квадрата равна 2Л10 3 . В рамках теории поляризуемости колебательный переход Ai- A2 в комбинационном рассеянии запрещен, тогда как в рамках более точной теории, основанной на отличии от нуля выражения (11.189), этот переход разрешен (переходы i->42-> дипольно-разрешенные). На практике приближение поляризуемости оказывается очень полезным,  [c.358]

Р , Ру, Р , Р , Р-, Р , составляю Цие индуцироианного дипольного момента 263 Р , Ру. P . операторы полного момента количества движения 226. 403, 431 P , составляющая полного момента количества движения ikj оси волчка 36, 38 PQR, структура ветвей параллельных полос симметричных волчков 448 (], постоянная удвоения типа I 407, 419, 423 q , координаты смещения 86, 222 Q, ветвь в инфракрасных полосах асимметричных волчков 501, 507, 511, 514 линейных молекул 409, 414, 415, 417  [c.637]

Несмотря на то что молекула НСО в основном состоянии имеет сильно изогнутую форму, она все же достаточно близка к симметричному волчку. Присутствие интенсивных Q-ветвей в наблюдаемых полосах показывает, что они могут рассматриваться как подполосы перпендикулярных полос (ЛА 1), для которых момент перехода перпендикулярен оси молекулы. Поскольку было найдено, что линии Q-ветви связаны с переходами с нижних компонент А -дублетов (фиг. 81), момент перехода должен быть перпендикулярен плоскости молекулы. Отсюда следует, что рассматриваемый электронный переход может быть либо А" — А -, либо Ы — М"-переходом. Поскольку анали.з электронной конфигурации не оставляет сомпопий в том, что основным состоянием молекулы НСО является состояние А, логичным представляется предноложение о том, что наблюдаемый переход является переходом типа А" — А.  [c.507]


Несмотря на то что молекула HN N очень близка к симметричному волчку, Л -удвоение, характерное для симметричного волчка, ясно проявляется для уровней А" = 1 и К" = 1 как удвоение во всех ветвях подполос 2 —1 и 1—2 и как колебательный дефект между Р-, R- и Q-ветвями в подполосах 0—1 и 1—0. Знак инерционного дефекта показывает, что эта полоса является полосой типа С, т. е. что момент перехода перпендикулярен плоскости молекулы. Положительный знак и небольшая величина инерционного дефекта свидетельствуют также о плоской структуре молекулы в обоих электронных состояниях. Геометрические параметры молекулы HN N в обоих состояниях приведены в табл. 67. Присутствие только одной полосы в системе, обуслов.пенной рассматриваемым электронным переходом, находится в согласии с принципом Франка — Кондона, поскольку структура молекулы изменяется при переходе очень мало.  [c.532]


Смотреть страницы где упоминается термин Момент в молекулах типа симметричного : [c.761]    [c.202]    [c.46]    [c.312]    [c.260]    [c.442]    [c.508]    [c.131]    [c.177]    [c.257]    [c.505]    [c.557]   
Электронные спектры и строение многоатомных молекул (1969) -- [ c.0 ]



ПОИСК



274, 323—327 симметричный

В в молекулах типа симметричного



© 2025 Mash-xxl.info Реклама на сайте