Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Основные частоты (см. также отдельные

При электротяге переменного тока обычно применяют рельсовые цепи также переменного тока, но другой, более высокой частоты. Частоту выбирают с таким расчётом, чтобы на путевое реле не могли воздействовать как ток основной частоты электротяги, так и гармоники от тока зтой основной частоты. Обмотки путевого реле ограждают фильтрами, препятствующими попаданию в него электротягового тока и его гармоник. В качестве путевого реле в такой рельсовой цепи может применяться реле индукционного типа (например ДСР). Другим типом реле может быть центробежное частотное реле, при котором отдельного фильтра уже не требуется.  [c.377]


Определяющие ядра совокупности 149, 251 Оптические изомеры 38, 239, 243, 373 Ортогональное преобразование 107, 113, 118 Ортогональность нормальных колебаний и собственных функций 83, 108, 282 Основные комбинационные частоты 262, 235, 269, 279, 283 (глава III, 2г) интенсивность 275, 283 степень деполяризации 268, 291 Основные частоты, активные и неактивные в инфракрасных спектрах 259, 269, 279 Основные частоты (см. также отдельные молекулы и молекулы типа XY. и т. д.) 81, 90, 159, 163, 176 в испускании или поглощении 259 нумерация 182, 293  [c.618]

Большинство инструментов характеризуется усилением основных частот, а также отдельных обертонов в определенных (одной или нескольких) относительно узких полосах частот (формантах), различных для каждого инструмента. Резонансные частоты (в герцах) формантной области составляют для трубы 100...200, валторны 200...400, тромбона 300...900, трубы 800...1750, саксофона 350...900, гобоя 800,,.1500, фагота  [c.12]

Наибольший интерес представляют пакетные, групповые и катящиеся преобразователи. Так, пакетные преобразователи представляют собой отдельные пьезоэлементы, собранные в пакет. В результате расчета колеблющегося прямоугольного пьезоэлемента было установлено, что для возбуждения упругого импульса, равного периоду собственных колебаний, пьезоэлемент должен иметь размеры, обеспечивающие кратность частот мод колебаний прямоугольного элемента. Возбуждая такой пьезоэлемент электрическим импульсом, в спектре которого отсутствуют частотные составляющие, равные кратным частотам, получают короткий упругий импульс. При длительности такого электрического импульса, равной одному периоду собственных колебаний пьезоэлемента, длительность упругого импульса будет также равна одному периоду, при длительности электрического импульса равного двум, трем и более периодам длительность упругого импульса соответственно будет равна двум, трем и более периодам. Таким образом, данные преобразователи позволяют управлять длительностью упругого сигнала. Однако практически для реализации эхо-импульсного метода они не пригодны, так как не обеспечивают высокой направленности при излучении и приеме упругих волн. Основной помехой при приеме упругих волн являются поверхностные волны, которые возникают при возбуждении ненаправленного преобразователя. Для обеспечения направленности в главном направлении (перпендикулярно поверхности, на которой расположен преобразователь) предложен метод группирования элементарных источников. Группирование позволяет существенно увеличить направленность и уменьшить уровень поверхностных волн. Различают линейное и базисное группирование. Линейное группирование полностью не исключает образования волн помех, оно их локализует в определенном направлении. Для исключения образования поверхностных волн предложен преобразователь, в котором пьезоэлементы располагают на круговой базе.  [c.86]


Электрические свойства такого диэлектрика—-диэлектрическая проницаемость и потери определяются в основном путем расчета с использованием силы тока, напряжения, сопротивления, емкости и частоты, которые измеряются путем непосредственного отсчета по прибору. Поэтому, на наш взгляд, является весьма целесообразным для измерения неэлектрических величин использовать емкость, определяемую с помощью емкостных преобразователей. Измерение плотности или содержания отдельных компонентов в стеклопластике с помощью емкостных преобразователей основано на изменении емкости преобразователя за счет изменения содержания связующего или стеклонаполнителя в стеклопластике. Однако следует отметить, что емкость преобразователя в значительной степени зависит от типа преобразователя, его геометрических размеров, диэлектрической проницаемости материала, используемой частоты переменного тока, температуры и других параметров. Поэтому при расчете и конструировании датчика, а также при составлении корреляционной связи между плотностью стеклопластика и емкостью датчика, необходимо все это учитывать.  [c.101]

Существующие в настоящее время методы расчета основываются на небольшом числе исследований, относящихся в основном к фундаментам маломощных агрегатов или агрегатов средней мощности. Измерительная аппаратура, применявшаяся при проведении этих исследований, была несовершенной, амплитуды колебаний замерялись лишь в отдельных точках, а фазы колебаний не записывались. Не было также данных для характеристики спектра частот собственных колебаний фундамента. Все о не давало возможности правильно представить работу фундамента под динамической нагрузкой.  [c.6]

Основной вид теплового движения атомов в кристаллической решетке — это колебания их около положения равновесия с частотой V = Ю з сек-К Термодинамически возможным является также движение атомов, т. е. их уход из положения равновесия и блуждание по кристаллической решетке. Такое движение и приводит к диффузионному переносу вещества, к диффузии. Понятие диффузия применяется не к движению отдельных атомов, а к макроскопическому потоку, возникающему в результате движения отдельных атомов. При этом оказывается, что смещение атомов из первоначального положения — путь диффузии (и, следовательно, макроскопический их поток) пропорционально  [c.86]

В некоторых случаях поломки деталей колес происходили через несколько часов работы, но зафиксированы поломки, возникшие через 80— 100 тыс. ч. спокойной эксплуатации при постоянных нагрузках и частотах вращения. Изменение динамических характеристик деталей колес в процессе длительной эксплуатации могло быть вызвано ослаблением заклепочного соединения, а также эрозийным износом отдельных деталей. Наиболее подвержены износу основной диск и сечения лопаток, прилегающие к нему. Однако этот износ может привести к изменению жесткости всего колеса и, в частности, собственных частот покрывающего диска.  [c.336]

Хотелось бы отметить одно важное обстоятельство, делающее данную книгу особенно ценной для советских читателей. Современная техника УКИ имеет дело с двумя основными классами лазеров. Первый — это твердотельные лазеры, работающие в режиме модуляции добротности. Второй — лазеры непрерывного действия на красителях. В лазерах первого класса лазер, по существу, при каждой вспышке лампы накачки проделывает полный цикл генерации от спонтанного шума до формирования цуга УКИ. Этот процесс формирования задается начальными условиями к моменту зажигания лампы, которые очень трудно достаточно точно контролировать. Поэтому лазерам этого класса присуща определенная нестабильность параметров, зато они довольно просты и позволяют получать энергии УКИ до 10 Дж. Лазеры второго класса работают с непрерывными источниками накачки и поэтому излучают непрерывный цуг УКИ. Разумеется, им также присуща определенная нестабильность. Но поскольку они излучают непрерывный цуг, имеется возможность сравнительно медленными обратными связями контролировать процесс генерации и получить УКИ с высокой воспроизводимостью параметров. Хотя энергия отдельного УКИ мала (типичная величина Дж), благодаря высокой частоте следования и стабильности можно применить мощные современные средства накопления и усреднения сигналов, добиваясь исключительной точности измерений. Это, пожалуй, основная причина того, что именно на лазерах этого класса получены самые впечатляющие результаты как по сокращению длительности, так и по применениям УКИ. Однако создание и запуск лазера второго класса составляют несравненно более сложную задачу, чем запуск первого. Немногие лаборатории располагают совершенными установками УКИ непрерывного режима. Авторы книги добились выдающихся успехов в развитии лазеров УКИ непрерывного действия на красителях, т. е. именно второго  [c.6]


Основные методы, применяемые при обработке вибрационных сигналов, можно условно разделить на две группы. К первой группе относятся так называемые метрические методы, основанные на измерении тех или иных параметров вибрации и сравнении их с эталонными или предельными значениями характерными для исправного или предельно допустимого состояния. В зависимости от спектрального состава, распределения уровней вибрации во всем диапазоне частот и во времени, а также от нормирования допустимого уровня измеряют амплитудные, средние или среднеквадратические значения. Основным преимуществом измерения среднеквадратических значений является независимость этих значений от сдвигов фаз между отдельными составляющими спектров измеряемой вибрации.  [c.49]

С ЧПУ [15, 30, 83, 89], выполнялись в основном с помощью вибратора. Они показали общность форм колебаний и близость резонансных частот станков разных типов. Основной резонанс связан с колебаниями системы корпусных деталей — рамы станка (стойки, консоли, шпиндельной бабки) в ее плоскости и поворотом стола вокруг горизонтальной оси, перпендикулярной к оси стойки и лежащей также в плоскости рамы. Частоты наиболее интенсивных колебаний имеют диапазон 70—80 Гц. Наблюдается общность форм колебаний зубофрезерных [72] и зубошлифовальных [24] станков, близких по виду компоновок. И в тех и других большое значение имеют колебания консольных стоек, закрепленных на станине, и самой станины. Частоты резонансных колебаний также весьма близки, и наиболее мощные резонансы лежат в диапазоне 30—60 Гц. Все это свидетельствует об общности расчетных схем станков, что, в свою очередь, позволяет разработать типовые расчетные схемы и программы расчета для отдельных групп станков (токарных, фрезерных, зуборезных и т. п.).  [c.141]

Катушки связи применяют для осуществления индуктивной связи между отдельными цепями и каскадами. Такая связь применима в антенной цепи, а также в цепях трансформаторов высокой и промежуточной частоты. Она позволяет разделить по постоянному току сеточные и анодные цепи, цепи базы и коллектора и т. п. К катушкам связи не предъявляют жестких требований по величине добротности и точности, поэтому их выполняют из тонких проводов с возможно меньшими габаритами. Основными параметрами катушек связи являются величина индуктивности и коэффициент индуктивной связи. Величина индуктивности определяется и обеспечивается конструкцией по общим правилам расчета катушек.  [c.196]

Электрооборудование тепловозов и дизель-поездов с гидропередачей предназначено для пуска и управления дизелем, передачей и вспомогательным оборудованием, а также сигнализации и защиты при аварийных режимах работы. Основная часть электрических машин и аппаратов тепловозов с гидропередачей и электропередачей идентичны. Исключение составляют электростартер, предназначенный для пуска дизеля на тепловозах с гидропередачей, датчики частоты вращения, в качестве которых используются тахогенераторы переменного тока с ротором — постоянным магнитом и отдельные аппараты.  [c.207]

В первые годы развития поверхностной индукционной закалки использовался диапазон частот от 500 или 1000 Гц (для закалки крупных валов холодной прокатки) до коротковолнового радиодиаиазона для закалки швейных игл. Производство закалочных установок с ламповыми генераторами имело мощную базу в радиопромышленности. Выпуск закалочных установок среднечастотиого диапазона базировался на производстве основного оборудования для индукционных бессердеч-никовых плавильных печей на частоту 2 кГц, а также 1 и 0,5 кГц. Использовались также отдельные установки с машинными преобразователями на частоты 5, 15, 18 кГц и др.  [c.27]

Вторая часть книги состоит главным образом из корреляционных диаграмм (диаграммы I—VI, стр. 80—85) и таблиц характеристических частот поглощения различных групп атомов. Эти диаграммы и таблицы дают основные сведения, необходимые для рациональной интерпретации инфракрасных спектров органических соединений. Приводится также таблица обратных величин. Необходимо иметь в виду, что неправильное использование диаграмм и таблиц всегда приводит к ошибочным заключениям. Кроме того, поскольку в таблицах приводятся интервалы частот поглощения, характерных для структурных группировок, более детальные сведения о спектрах соединений или каких-то модельных структур следует искать в литературе. Неоценимую помощь в этом отношении оказывают обширные обзоры литературных данных Беллами [1] и Джонса и Сандорфи [2]. Отнесение абсорбционных частот к отдельным колебаниям следует проводить только после тщательного рассмотрения всех переменньих условий получения спектров, как описано Б части 1.  [c.75]

Многофазные умножители часто-т ы. Т. к. наиболее распространенной является трехфазная симметричная система,то рациональнее всего рассмотреть вопрос У. ч. помощью трех однофазных совершенно одинаковых трансформаторов. При включении однофазного трансформатора на синусоидальное напряжение намагничивающий железо переменный ток будет содержать в себе высшие гармоники нечетного порядка, причем амплитуда последних будет тем больше, чем сильнее насыщен сердечник. Особенно ярко обьгано выделяется 3-я гармоника. При включении первичных обмоток трех однофазных трансформаторов треугольником в связи с тем-, что в этом случае каждый железный сердечник работает самостоятельно, высшие гармоники тока свободно могут пройти по обмотке, почему силовой поток трансформаторов остается синусоидальным, и вторичное напряжение каждой фазы будет также синусоидой, т. о. в этом случае никакого умножения частоты не будет. Чтобы использовать высшие гармоники тока для поставленной нами задачи, необходимо последовательно с каждым трансформатором включить катушку самоиндукции без железа или с разомкнутым железным сердечником. При этом уже суммарный поток обоих последовательно включенных трансформаторов должен представлять собою синусоидальную функцию основной частоты, почему потоки каждого из них м. б. искаженными, а следовательно и эдс могут содержать высшие гармоники. Поэтому если желательно использовать для У. ч. искаженную кривую тока, то при трехфазной системе необходимо в каждую фазу включать два железных сердечника насыщенный и ненасыщенный. В каждой фазе первичные обмотки обоих сердечников д. б. включены последовательно, а фазы между собою—треугольником. Вторичные обмотки можно поместить только на сердечниках с ненасыщенным железом и соединить их также треугольником с разрывом одной из его вершин. По свойствам трехфазной симметричной системы в этом случае напряжение основной частоты во вторичной обмотке системы отсутствует вовсе, а имеют место только эдс высших гармоник нечетного порядка, преимущественно третьей гармоники. Три отдельные катушки с ненасыщенным железом можно заменить одной общей. Существенным недостатком такой системы при достаточно хорошем кпд ( г 0,9) является слишком низкий коэф. мощности ( os ) 0,2), для увеличения к-рого приходится прибегать к компенсации емкостью. Рассмотрим теперь вопрос умножения частоты в том случае, когда первичные обмотки трех однофазных трансформаторов соединены звездой. Здесь благодаря сопряженности фаз линейные напряжения и линейные токи будут синусоидальными, фазные же напряжения будут искажены и будут содержать в себе высшие гармоники. Включая вторичные обмотки треугольником с разрывом в одной из его вершин, мы получим напряжение, свободное от основной частоты. Высшие гармоники, кратные трем, благодаря совпадению фаз будут в этом напряжении складываться, что нетрудно вывести из рассмотрения общих свойств 3-фазной симметричной системы. При осуществлении такого умножителя частоты необходимо пользоваться обязательно тремя отдельными трансформаторами, чтобы поток третьей гармоники каждой фазы мог свободно замкнуться через железо.Применение нормального трехстерж-  [c.280]


Далее, если даже вторая гармоника во входном напряжении отсутствует, при угле отсечки 90° в составе анодного тока вторая гармоника выражена весЬ ма сильно. И если анодная нагрузка имеет недостаточную избирательность, иа ней будет выделяться напряжение второй гармоники наряду с первой. Совместное их действие приводит к тому, что в отдельные моменты они складываются, и лампа переходит в перенапряженный режим, когда суммарная амплитуда переменного нагфяжения не может более расти и поэтому ограничивается. Это также.приводит к появлению внеполосных излучений. Следовательно, анодная нагрузка линейного усилителя должна иметь небольшое сопротивление для токов гармоник, чтобы их напряжение на, аноде было по крайней мере в 10 раз меньше напряжения основной частоты. Тогда уровень образующихся здесь внеполосных искаженна будет — 35....40 дБ.  [c.107]

В главном циркуляционном контуре (ГЦК) с четным числом петель наблюдаются два ряда акустических стоячих волн. Первый тип соответствует волнам с узлом, совпадающим с вертикальной осью симметрии ГЦК, имеющим частоты 6,6 X п Гц для реактора ВВЭР-1000 (л = 1, 2,...), /г = 1 соответствует основной частоте ряда второй - с пучностью на этой оси (частоты 8,8 х п Гц). Вибрации ТВС приводят к появлению изменяющейся во времени и пространстве переменной составляющей нейтронного поля, что, в свою очередь, приводит к появлению соответствующей переменной составляющей реактивности и может быть зарегистрировано по сигналам ионизационных камер. Если колебания отдельных ТВС синфазны, сигналы одной из пар ИК на частоте вибрации также будут синфазными, в то время как для двух остальных пар они окажз тся противофазными. Сходные результаты получены и для групп датчиков прямого заряда.  [c.200]

Развитие машинной техники приводит к постоянному росту ее качественных параметров (к высоким скоростям, большой точности, сверхнизким и сверхвысоким давлениям, температурам и т. д.)- Так, например, скорость прокатки листовой стали на высокоскоростных станах примерно в два раза больше, чем на обычных. Ясно, что управление вручную машинами с такими уль-тропараметрами становится невозможным или малоэффективным. Кроме того, некоторые производственные процессы исключают возможность непосредственного контакта обслуживающего персонала. В этих случаях управление машинами можно осуществлять только с помощью автоматики. Поэтому в последнее время все шире внедряются в машинах элементы автоматического управления, обеспечивающие точный контроль и регулирование их работы. В этой связи очень важно, чтобы элемент управления машиной, а также все ее остальные звенья (машина-двигатель, передаточный механизм, рабочая машина) функционировали без отказов. Низкая надежность машины сводит на нет ее установочные качественные параметры. Что толку в высокой мощности машины, если в процессе ее использования наблюдается большая частота отказов. С понижением степени безотказности уменьшается полезный фонд рабочего времени, а следовательно, и объем продукции или работы, производимой с помощью машины. Однако снижается не только удельный вес ее рабочего времени, но растут неоправданные издержки совокупного общественного труда, связанные с ремонтными работами и ее техническим обслуживанием, а также с увеличением производства запасных частей, топлива, электроэнергии и других ресурсов в смежных отраслях. Так, в результате оснащения промышленности, сельского хозяйства, строительства и транспорта машинной техникой недостаточной надежности народное хозяйство терпит ущерб до 10 млрд. руб. в год [42]. Поэтому еще на стадии конструирования машины для достижения необходимой степени ее безотказности нужно использовать все средства, которые обеспечивают минимум затрат общественного труда на выполнение поставленной цели. Причем основная задача заключается в повышении уровня безотказности применительно к машине в целом, а не только отдельных ее элементов, деталей.  [c.82]

Из Ilfиведенпых рассуждений вытекает, что для каждой критической скорости мы полу [им. матрицу пор.чдка Ь/, т. е. h,-. Совокупность этих матриц для всех к, начиная с fe=l до к=п, образует фундаментальную систему ненулевых решений, например уравнение (2.52), в котором в целях упрощения опущено гироскопичское влияние дисков. Каждая форма колебаний при определенном k называется собственной формой свободных колебаний, а соответствующая угловая скорость ч> — собственной угловой скоростью (в некоторых случаях также собственной угловой частотой). Отдельные матрицы, состоящие из величин д.Ь , т. е. являются линейно независимыми друг от друга. Это означает, что уравнение С,, h,- + С., Ь,- -. . . С , ,h О может быть удовлетворено только тогда, когда i= >-. . . = С -— 0, Все основные формы колебаний удовлетворяют уравнению  [c.53]

Эти методы расчетов основывались на небольшом количестве исследований, относящихся в основном к фундаментам турбогенераторов малой и средней мощностей. При проведении этих исследований применялась несовершенная измерительная аппаратура. Амплитуды колебаний измерялись лишь в отдельных точках и фазы колебаний не записывались. Не было также данных для характеристики спектра частот собственных колебаний фундамента. Все это не давало возможности правильно оценить работу фундамента под во здействием динамической нагрузки.  [c.4]

Для определения надежности лопаточного аппарата применяют, в основном, три разновидности испытаний статические, т. е. на неподвижном роторе турбины или на отдельных оправках, дисках, и динамические — в кемпбелл-машиие и в условиях эксплуатации. Первая разновидность испытаний заключается в выявлении спектра частот колебаний, установлении опасных форм и подготовки сведений, необходимых для отстройки лопаток. Вторая и третья разновидности позволяют получить динамические частоты колебаний. При этом последняя разновидность используется для получения сведений о напряженном состоянии лопаток при различных режимах их эксплуатации. Последний вид испытаний в области стационарной энергетики в настоящее время очень громоздок и требует затраты большого труда и времени, исчисляющегося многими месяцами. Поэтому статические испытания, на которые затрачивается во много раз меньше труда и времени, также оказываются весьма полезными.  [c.194]

КОЛЕБАНИЯ (вынужденные [возникают в какой-либо системе под влиянием внешнего воздействия переменного пружинного маятника (характеризуется переходным режимом и установившимся состоянием вынужденных колебаний резонанс выявляется резким возрастанием вынужденных механических колебаний при приближении угловой частоты гармонических колебаний возмущающей силы к значению резонансной частоты) электрические осуществляют в электрическом колебательном контуре с включением в него источника электрической энергии, ЭДС которого изменяется с течением времени] гармонические относятся к периодическим колебаниям, а изменение состояния их происходит по закону синуса или косинуса затухающие характеризуются уменьшающимися значениями размаха колебаний с течением времени, вызываемых трением, сопротивлением окружающей среды и возбуждением волн когерентные должны быть гармоническими и иметь одинаковую частоту и постоянную разность фаз во времени комбинационные возникают при воздействии на нелинейную колебательную систему двух или большего числа гармонических колебаний с различными частотами кристаллической решетки является одним из основных видов внутреннего движения твердого тела, при котором составляющие его частицы колеблются около положений равновесия крутильные возршкают в упругой системе при периодически меняющейся деформации кручения отдельных ее элементов магнитострикционные возникают в ферромагнетиках при их намагничивании в периодически изменяющемся магнитном поле модулированные имеют частоту, меньшую, чем частота колебаний, а также определенный закон изменения амплитуды, частоты или фазы колебаний неавтономные описываются уравнениями, в которые явно входит время некогерентные характерны для гармонических колебаний, частоты которых различны незатухающие не меняют свою энергию со временем нормальные относятся к гармоническим собственным колебаниям в линейных колебательных системах  [c.242]


Из теории лопаточных машин известно, что при работе компрессора, особенно с высокой степенью повышения давления, в процессе запуска и вывода его на основные эксплуатационные режимы, а также при больших приведенных частотах враш,ения может возникать газодинамическая неустойчивость, поэтому в двигателях с высокими значениями п компрессор необходимо регулировать. Из применяемых на практике трех способов регулирования компрессоров (перепуск воздуха из промежуточных ступеней, поворот лопаток направляюш,их аппаратов и использование двух- или трел. .аскадных компрессоров) способ разделения компрессора на отдельные каскады со своими турбинами, имею-ш,ими различную частоту враш,ения, в наибольшей мере определяет конструктивную схему двигателя, число его опор и валов. Следует также отметить, что применение двух- или трехкаскадных компрессоров благоприятно сказывается и на приводяш,их их турбинах, так как позволяет оптимизировать газодинамические параметры турбин и уменьшить число их ступеней.  [c.33]

На рис. 8.10 представлены третьоктавные спектры шума сверхзвуковых струй в дальнем поле при Mi = 2, М2 = О и 2 и п = 0,75, 1,0 и 1,5 при (f = 30°. Сравнение этих спектров при Mi = 2, М2 = 0со случаем Ml = М2 = 2 позволяет оценить снижение шума, достигаемое при наличии периферийных струек. Отсюда можно заключить, что при расчетном режиме истечения (п = 1), когда дискретная составляющая не образуется, снижение уровня широкополосного шума в присутствии периферийных струек достигает 5 дБ. При нерасчетных режимах истечения (пф 1) основное снижение шума, вызванное периферийными струйками, обусловлено подавлением дискретной составляющей. В отдельных случаях, однако, наблюдается смещение дискретной составляющей в область больших частот. Снижение шума здесь может достигать 10 дБ. Были также измерены узкополосные спектры струйной системы и центральной струи при <р = 30°, Mi=2hM2=0 при п = var. На рис. 8.11 они представлены для случаев п = 0,75,1,0 и 1,5. Анализ узкополосных спектров подтверждает предыдущие выводы, сделанные при рассмотрении третьоктавных спектров.  [c.204]

После монтажа и реконструкции системы регулирования, а также при выявлении существенных изменений статической и динамических характеристик системы регулирования турбина испытывается на сброс полной нагрузки с отключением электрического генератора от сети. Во время испытаний путем осциллографирования фиксируют частоту вращения ротора, смещение основных элементов системы регулирования (золотников, сервомоторов, клапанов) и давлений в характерных точках системы. Анализ осциллофамм позволяет выявить недостатки отдельных звеньев и узлов системы и наметить пути их исправления.  [c.356]

Электрические свойства материала зависят не только от его природы-структуры, но и от состояния материала, а также от параметров электрического поля (частоты тока и в отдельных случаях от напряженности электрического поля). Все эти зависимости определяются экспериментально по общеизвестным методикам [34, 39, 61, 62] в соответствии с ГОСТом 9141—65. В диапазоне частот (1-5-100) 10 гц, который в основном используется для нагрева диэлектриков, наибольшее распространение получили резонансные методы измерений диэлектрической проницаемости и тангенса угла потерь. Эти измерения осуществляются с помощью куметров. Отечественная промышленность выпускает куметры следующих типов Е9-4 (ИДВ-1) на диапазон измерений (0,05н-35) 10 гц и Е9-5 на диапазон измерений (15-Г-250) 10 гг(.  [c.31]

Наиболее эффективным способом расширения диапазона воспроизводимых частот является разделение его на части с тем, чтобы каждая из этих частей воспроизводилась отдельной головкой громкоговорителя, большей по размерам для низкочастотной области и меньшей для высокочастотной. Подключают эти головки через так называемые разделительные фильтры, обеспечивающие попадание на данную головку напряжения только тех частот, для воспроизведения которых она предназначена. Выбор частот раздела, а также крутизны разделительного фильтра существенно влияют на качество звучания громкоговорителя. Поэтому при конструировании акустических систем субъективная оценка качества звучания является основным критерием передачи их в производство. Качество звучания акустической системы [6.7] должно быть не хуже образца по качеству з вучания, утвержденного в установленном порядке, для каждой группы сложности. Качество звучания проверяется по ТУ.  [c.116]

Грампластинка скользящего тона предназначена для снятия амплитудно-частотных характеристик. Она содержит запись сигнала изменяющейся частоты от 20 до 20 ООО Гц. Частотный масштаб скользящего тона , воспроизводимого с пластинки, должен совпадать с масштабом диаграммной ленты, используемой в самопишущем регистраторе уровня. Звуковые канавки выполнены в виде отдельных зон поперечной и глубинной записи, а также записи сигналов левого и правого каналов. Эффективное значение колебательной скорости на частоте 1000 Гц при поперечной записи — 2,54 см/с. Поскольку увеличивать колебательную скорость на более высоких частотах недопустимо из-за возникновения эффекта неогибания, на более высоких частотах принят режим постоянства на более низких частотах в соответствии с ГОСТ 7893—72 принят спад достигающий на частоте 20 Гц 19,3 дБ. Записи скользящего тона предшествует сигнал частоты 1000 Гц, служащий для установки в исходное положение измерительной аппаратуры с самописцем. Диаграммная лента приходит в движение при прекращении сигнала частоты 1000 Гц. Особые грампластинки выпускают для измерения переходного затухания между каналами. Их основные параметры приведены в табл. 9.5.  [c.229]

Согласно ГОСТу 13600—68 класс точности средств измерений — обобщенная характеристика средств измерений, определяемая пределами допускаемых основной и дополнительных погрешностей, а также другими свойствами средств измерения, влияющими на их точность, значения которых устанавливаются в стандартах на отдельные виды средств измерений. Классы точности средств измерений характеризуют их свойства, но не являются непосредственным показателем точности измерений, выполняемых с помощью этих средств. Так, например, класс точности конп,евых мер длины характеризует степень приближения их размера к номинальному, допускаемое отклонение от плосконараллельности, а также притираемость и нестабиль-Г10сть. Класс точности нормальных элементов характеризует пределы, в которых должны находиться действительные значения их э. д. с., стабильность во времени и т. п. Класс точности вольтметра переменного тока характеризует его наибольшую допускаемую основную погрешность, допускаемые изменения показаний, вызываемые отклонением от нормальных значений температуры, частоты переменного тока, внешним магнитным полем и другими влияющими величинами.  [c.297]

Пространство наблюдений У существенно отличается от заданного пространства X. Этот случай обнаружения событий в условиях неопределенности является наиболее общим, требующим решения всех указанных выше частных задач. Однако наиболее важной и трудной здесь является задача нахождения границ событий в пространстве наблюдений, минимизирующих потери от ошибок при обнаружении событий. Методы обнаружения событий в этом случае определяются имеющейся исходной статистической информацией о частоте отдельных событий и связи точек пространств X п У, а также режимом обнаружения событий, принятым в конкретной системе контроля. В большинстве случаев работы систем контроля весь класс событий, требующих обнаружения, подразделяется на два подкласса, различающихся стратегией обнаружения основные нарушения и неисправности, выявляемые в ходе непрерывного изучения поступающей с производства информации, и вызывающие их причины, подвергающиеся анализу спорадически при наступлении какого-либо основного нарушения или неисправности. Если первый подкласс событий характеризует режим работы производства, то второй подкласс событий диагносцирует появление того или иного режима.  [c.223]

Из графика рис. (2-2) можно видеть, что встречающиеся на практике величины ум (от О до 0,5) мало влияют на значение коэффициента вибронзоляции г) в зоне эффективной изоляции и сильно влияют в резонансной области. Отсюда также следует целесообразность увеличения демпфирования подвески, в связи с тем, что транспортные вибрации в основном происходят на резонансных частотах отдельных элементов перевозимой аппаратуры, иа которые накладываются возмущения от неровностей дороги. Обычно это нерегулярные возмущения, но они могут иметь и регулярный характер. Например, при движении по булыжной мостовой или автостраде с бетонными настилочными плитами наблюдается периодичность возмущения, определяемая скоростью движения автотранспорта и линейными размерами повторяющихся элементов дорожного покрытия. Периодические возмущения имеют место и на стыках рельсов при движении рельсового транспорта.  [c.136]

Основные характерные случаи для данной задачи А иллюстрирует рис. 1, где показаны дисперотонные кривые и три значения безразмерной частоты I = 1,2,3. При й = и) дисперсионное уравнение (25) задачи А не имеет вещественных корней и все отдельные волны являются неоднородными, т.е. экспоненциально убывающими в соответствующих областях При ( = и2 имеем особый случай кратного вещественного корня, при котором возможно отсутствие ограниченного решения. Данный случай будем называть резонансным. При П = оЗз имеется помимо счетного числа неоднородных волн также и конечное число однородных волн, бегущих вдоль х- без затухания.  [c.337]


В книге излагается теория переноса монохроматического излучения, изотропного и анизотропного (глава 2), и излз ения в спектральной линии с полным или частичным перераспределением по частоте (глава 4). Геометрия рассеивающих сред предполагается плоской. Рассматриваются бесконечная и полубесконечная среды, а также плоский конечный слой. Подробно излагается аналитическая теория, в том числе точные, асимптотические и приближенные методы решения модельных задач. В отдельную главу 3 выделен резольвентный метод, позволяющий найти точные выражения для основных функций, характеризующих поля излучения, и асимптотики этих функций. Дается представление о некоторых распространенных численных методах, В последней главе 5 рассматриваются задачи об определении интегральных характеристик полей излучения, таких как среднее число рассеяний, о рассеянии в молекулярных полосах, с частичным перераспределением по частоте, а также с учетом поляризации и движения рассеивающей среды.  [c.9]

Особым видом магнитомягких материалов, применяемых в технике высокочастотной многоканальной проводной связи и радиоэлектронике, являются магнитодиэлектрики. Благодаря мелкодисперсному состоянию магнитного материала и обволакиванию отдельных его зерен электроизоляционным материалом магнитодиэлектрики обладают высоким удельным сопротивлением и малыми потерями на вихревые токи, имея, однако, пониженные значения магнитной проницаемости. Основными видами магнитодиэлектриков являются алсифер с неорганической связкой из жидкого стекла алсифер с аминопластовой связкой алсифер с полистирольной связкой карбонильное железо со связкой из смолы фенолформальдегидного типа или двойной связкой — первый слой из жидкого стекла, второй из смолы фенолформальдегидного типа карбонильное железо с полисти-рольной связкой. На этих основах выпускается большое количество марок магнитодиэлектриков, отличающихся друг от друга размерами зерен магнитных материалов и количеством связующего. Потери в магнитодиэлектриках на высоких частотах определяются не только потерями в самом, магнитном материале, но также и диэлектрическими потерями в связующем материале. При выборе последнего следует учитывать технологические свойства (что важно при получении деталей сложной формы), а также механические свойства изделий. Кроме потерь мощности и начальной магнитной проницаемости, большое значение имеет температур-  [c.304]


Смотреть страницы где упоминается термин Основные частоты (см. также отдельные : [c.348]    [c.216]    [c.534]    [c.481]    [c.586]    [c.372]    [c.281]    [c.304]    [c.204]    [c.94]    [c.280]    [c.414]    [c.139]    [c.360]    [c.177]    [c.115]   
Колебательные и вращательные спектры многоатомных молекул (1949) -- [ c.0 ]



ПОИСК



Основные частоты (см. также отдельные в газе, жидкости и твердом теле

Основные частоты (см. также отдельные в испускании или поглощении

Основные частоты (см. также отдельные для линейных молекул

Основные частоты (см. также отдельные для линейных симметричных молекул

Основные частоты (см. также отдельные молекулы и молекулы типа

Основные частоты (см. также отдельные нумерация

Основные частоты (см. также отдельные определение из силовых постоянных

Основные частоты (см. также отдельные правила отбора для инфракрасного спектр

Основные частоты (см. также отдельные правила отбора для комбинационного

Основные частоты (см. также отдельные спектра

Основные частоты (см. также отдельные формулы и наблюденные значения

Частота основная

Частота основная (основной тон)



© 2025 Mash-xxl.info Реклама на сайте