Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Система со многими степенями свободы уравнение движения

Как было показано в предыдущем параграфе, динамическая работа фундамента турбогенератора описывается системами со многими степенями свободы, требующими вычисления высших частот колебаний. В ряде случаев необходимо выяснить формы колебаний, что можно сделать, зная лишь точные значения частот. Поэтому наиболее целесообразно решать эту задачу при помощи разложения в ряд векового уравнения движения материальных точек, позволяющего найти весь спектр частот собственных колебаний. Ранее практиковавшиеся способы расчета Л. 20, 21 и 29] не давали обобщенного решения, пригодного для определения колебаний в любом направлении. Ниже дан обобщенный способ решения. Следует заметить также, что применение уточненных схем и точной методики расчета позволяет отказаться от так называемых условных значений частот собственных колебаний, благодаря чему отпадает условность расчетной методики.  [c.109]


Уравнения движения системы со многими степенями свободы, записанные в матричной форме уравнений равновесия, имеют вид  [c.45]

СВЯЗЯМИ. Например, при создании транспортирующих и многих технологических вибрационных машин необходимо сообщить колебания упругой балке или оболочке, мало отличающиеся от их прямолинейных поступательных колебаний как твердых тел. Данную проблему можно назвать проблемой создания (синтеза) заданного вибрационного поля. Ее особенности и трудности решения определяются в основном следующими обстоятельствами. Во-первых, применяемые в настоящее время вибровозбудители (см. часть третью) развивают вынуждающие силы, распределенные по некоторой небольшой части поверхности упругих тел, входящих в колебательную систему эти силы уместно считать сосредоточенными. Во-вторых, число вибровозбудителей практически всегда ограничено, более того, по экономическим и эксплуатационным соображениям желательно, чтобы их число было минимальным. В-третьих, действие реальных вибровозбудителей на колебательную систему далеко не всегда можно свести к действию заданных вынуждающих сил, как это обычно делается в теории вынужденных колебаний. Указанные силы существенно зависят от колебаний тех участков упругой системы, с которыми связаны возбудители, вследствие чего возбудители образуют с упругой системой единую колебательную систему с большим, нежели у исходной системы, числом степеней свободы за счет добавочных собственных степеней свободы вибровозбудителей. Уравнения движения совокупной системы оказываются при этом, как правило, нелинейными.  [c.146]

При выводе уравнений движения механической системы КА — ГИО можно пользоваться различными методами теоретической механики. Наиболее прост метод кинетостатики [8], однако рассматриваемые системы являются достаточно сложными системами с многими степенями свободы и сильными перекрестными связями.  [c.83]

Для характеристики и анализа динамических процессов, происходящих в станке, необходимо составлять расчетную схему и уравнения, описываюш,ие движение упругой системы. Основными параметрами упругой системы являются массы и моменты инерции узлов и деталей, жесткость упругих элементов, демпфирование (силы неупругого сопротивления), связи между перемещениями масс со многими степенями свободы.  [c.82]

Исследования систем со многими степенями свободы всегда вызывали большой интерес. Причиной этого является, с одной стороны, желание понять поведение непрерывных систем, описываемых нелинейными дифференциальными уравнениями в частных производных, а с другой — связь со статистической механикой. Геометрия многомерных резонансов рассматривалась в п. 6.1а, а также в 6.3 (более подробное описание можно найти в работе [70]). С точки зрения резонансной структуры вопрос о поведении системы с большим числом степеней свободы сводится к вопросу о том, возрастает ли плотность основных резонансов быстрее, чем уменьшается их ширина, по мере распределения энергии по многим степеням свободы. Если это действительно так, то при N - оо следует ожидать перекрытия резонансов и сильной стохастичности движения.  [c.404]


В гл. 3 вводится матричная форма представления уравнений движения как в усилиях (с учетом коэффициентов жесткости), так и в перемещениях (с учетом коэффициентов влияния податливости). Приводимые обсуждения служат как бы мостом для перехода к системам со многими степенями свободы, рассматриваемым в следующей главе. Кроме того, исчерпывающе обсужден вопрос взаимодействия инерционных сил и сил тяжести с учетом упругих сил и влияния вязкого демпфирования.  [c.12]

Для произвольной системы с двумя степенями свободы всегда можно определить ее частоты и формы колебаний так, как было показано выше для системы, изображенной на рис. 3.1, а. Поскольку уравнения движения любых систем со многими степенями свободы имеют одинаковую форму с точки зрения математики, получением дальнейших решений пока заниматься не будем. Это будет сделано систематическим образом матричными методами ниже в этой главе, а также в гл. 4.  [c.195]

В данной главе концепции, введенные в гл. 3 для систем с двумя степенями свободы, будут распространены на системы со многими степенями свободы. В эту категорию будут включены все системы, имеющие более одной степени свободы, но в то же время число степеней свободы не должно быть бесконечным. Конфигурация подобной колебательной системы определяется конечным числом координат перемещений. Если имеется п степеней свободы, соответствующих элементам массы, для описания движения этой системы требуется п дифференциальных уравнений.  [c.244]

Для того чтобы продемонстрировать преимущества процесса диагонализации, рассмотрим уравнения движения в усилиях для свободных колебаний без демпфирования системы со многими степенями свободы  [c.259]

Рассмотрим теперь случай системы со многими степенями свободы, к которой приложены внешние силы, соответствующие координатам перемещения. Матричная форма уравнений движения в усилиях имеет вид  [c.270]

Выше были обсуждены четыре способа исследования движений частного вида системы со многими степенями свободы (см. рис. 4.1, а) при наличии движения основания. Если использовать уравнения движения в усилиях, с помощью выражения (4.81) можно определить эквивалентные нагрузки для заданных перемещений, а с помощью выражения (4.86) те же нагрузки для заданных ускорений. Последняя процедура легче первой, однако при этом вычисляются динамические перемещения относительно движущегося основания. С другой стороны, когда записываются уравнения движения в перемещениях, зависящие от времени, свободные координаты перемещений, обусловленных перемещениями основания, определяются из выражения (4.88), а когда задаются ускорения перемещений, эти координаты определяются из выражения (4.93). Сравнивая оба выражения, видим, что первое удобнее второго. Более того, выражение (4.88) также проще, чем выражения (4.81) или (4.86), используемые в подходах с применением уравнений движения в усилиях. Следовательно, в том случае, когда заданы перемещения основания и не трудно определить податливости системы, предпочтительнее подход, основанный на использовании уравнений движения в перемещениях. Это, безусловно, справедливо и для показанной на рис. 4.1, а статически определимой системы, в которой возникают перемещения как абсолютно жесткого тела при движениях основания. Однако для статически неопределимых систем, как правило, удобнее методы, в которых используются уравнения движения в усилиях.  [c.282]

В дальнейшем будут рассмотрены совершенно общие колебательные системы со сколь угодно большим числом степеней свободы. Число координат Хр р=1,. . п), необходимое для однозначного описания движения таких систем, равно числу степеней свободы. При принципиально несложных, но из-за наличия многих степеней свободы весьма трудоемких вычислениях мы будем придерживаться обозначений, принятых в тензорном исчислении и позволяющих сократить записи. Различные координаты Хр отличаются индексами и могут рассматриваться как компоненты одного вектора х. Соответствующим образом характеризуются двойными индексами и входящие в уравнение движения коэффициенты, например В общем случае коэффициенты образуют квадратные матрицы и оба индекса могут пробегать свои интервалы значений независимо друг от друга. В особых случаях, например при записи определителей миноров или производных, применяются дополнительные индексы.  [c.271]


Движение твердого тела во многом зависит от числа его степеней свободы тело с одним и тем же числом степеней свободы может совершать различные движения, не похожие друг на друга. Свободное твердое тело в общем случае имеет шесть степеней свободы. Действительно, положение тела в пространстве относительно какой-либо системы координат, например декартовой, определяется заданием трех его точек, не лежащих на одной прямой. Расстояния между точками в твердом теле должны оставаться неизменными при любых его движениях. Это накладывает на координаты фиксированных точек три условия. Девять координат должны удовлетворять трем уравнениям.  [c.123]

Эта книга является инженерным учебником, и общая теория изложена в ней довольно элементарно. Однако колебания систем с двумя и тремя степенями свободы изложены подробно, и многие из рассмотренных примеров полностью решены. Эти сравнительно простые системы дают ясное представление о таких понятиях, как главные колебания, резонанс и т. д., что часто остается менее ясным при абстрактном изложении. В книге рассмотрены также некоторые специальные вопросы, такие, как приближенное решение векового уравнения, или теория малых колебаний системы вблизи установившегося режима движения.  [c.376]

Таким образом, для исследования устойчивости в малом прежде всего составляются дифференциальные уравнения возмущенного движения, в которых искомыми переменными служат отклоне--ния системы от равновесного состояния число этих уравнений равно числу степеней свободы системы п. Как говорилось, при малых отклонениях уравнения оказываются линейными и во многих случаях содержат постоянные коэффициенты, т. е. имеют вид  [c.154]

Таким образом, анализ динамики системы, описываемой линейными дифференциальными уравнениями с периодическими коэффициентами, требует определения фундаментальной матрицы ф за время одного периода (от / = О до Т) путем интегрирования уравнения ф = Лф с начальными условиями ф(0) = = /. Затем определяются собственные значения и собственные векторы матрицы а = ф(Г) и корни системы у = (1/Г)1п0. Формы составляющих движения определяются зависимостями PS = ф5е или U, = е- / фУ/ (где v, — собственные векторы а). Система неустойчива, если 9/ >1 или Re(X,/)>0 для какой-либо из мод. Часто анализ сводится лишь к нахождению собственных значений, поскольку переменные во времени собственные векторы периодической системы содержат много информации о ней. Для системы второго порядка с одной степенью свободы можно получить характеристическое уравнение непо-  [c.346]

Первая лекция. Важность изучения колебательных движений при рассмотрении многих вопросов современной техники. Причины возникновения колебаний. Свободные колебания систем с одной степенью свободы. Типичные примеры колебания груза на пружине, крутильные колебания диска, колебания груза на конце консоли, малые колебания математического и физического маятника. Условия, при которых упомянутые системы можно рассматривать как системы с одной степенью свободы. Общность рассмотренных задач. Интегрирование дифференциального уравнения свободных колебаний. Параметрическая структура коэффициента жесткости. Возникновение нелинейных задач теории колебаний.  [c.22]

Прекрасные результаты Пуанкаре и Четаева разрабатывались и обобщались во многих работах [7-23]. В частности, уравнения Пуанкаре и Четаева были применены для систем с бесконечным числом степеней свободы и распространены на неголономные системы. Дано также обобщение этих уравнений на замкнутые системы преобразований, когда структурные коэффициенты переменны. Показано, что обобщенные уравнения Пуанкаре и Четаева включают уравнения движения как в независимых, так и в зависимых переменных, как в голономных, так и в неголономных координатах (квазикоординатах) для голономных и для неголономных систем, и в этом смысле являются общими уравнениями аналитической динамики.  [c.4]

О. к. пользуются при решении многих задач, особенно когда система подчинена связям, налагающим ограничения на ее движение. При этом значительно уменьшается число ур-ний, описывающих движение системы, по сравнению, напр., с ур-ниями в декартовых координатах (см. Лагранжа уравнения механики). В системах с бесконечно большим числом степеней свободы (сплошные среды, поля) О. к. являются особые ф-ции пространств, координат и времени, наз. потенциалами, волновыми функциями и т. п. при это.м оказывается возможным характеризовать движение таких систем с помощью функции Лагранжа, зависящей определенным образом от выбранных О. к.  [c.461]

Уравнения динамики принято разделять на интегрируемые и неинтегрируемые. Интегрируемые системы имеют достаточно много независимых первых интегралов (например, для полной интегрируемости гамильтоновой системы с п степенями свободы достаточно знать п интегралов, попарно находящихся в инволюции см. [3, гл. 4]). В соответствии с этим можно выделить интегрируемые биллиардные системы, обладающие полным набором независимых интегралов. Мы укажем основные известные интегрируемые биллиарды, а также некоторые способы их точного интегрирования и исследования качественных особенностей движения.  [c.99]

Для системы, которая соединяется с основанием во многих точках, также можно определить динамическое перемещение, рассматривая независимые движения каждой точки соединения системы с опорами, для чего вычисляются соответствующие коэффициенты жесткости или податливости . В подобном случае относительные перемещения точек соединения системы с опорой должны быть малы по сравнению с общими линейными перемещениями. Если система с п степенями свободы имеет г точек соединения с опорами, которые могут двигаться независимо друг от друга, уравнение движения в усилиях (б) можно обобщить следующим образом  [c.285]


В большинстве задач параметры, описывающие поведение дан-НОЙ системы, связаны между собой дифференциальными уравнениями или неголономными связями движение системы исследуется при помощи интегрирования этих уравнений с привлечением необходимого количества начальных условий. Во многих случаях число независимых переменных оказывается больше, чем число связей, и описать правильно движение невозможно, если не будет назначена какая-то программа изменения группы переменных, символизирующих дополнительные степени свободы системы. Такие переменные соответственно именуются управляемыми переменными . В большинстве случаев их можно опознать по тому признаку, что их дифференциальные коэффициенты, или производные по времени, если время считается независимым переменным, не входят в уравнения связи. В авиационной технике управляемыми переменными являются именно те параметры, которые подвергаются воздействию со стороны летчика в ракетной технике —это те параметры, которые управляются командными сигналами.  [c.746]

Рассмотрим применение метода статистических испытаний при исследовании случайных колебаний многомассовой системы (рис. 3.9) при движении по дороге со случайными неровностями (проведено А. И. Котовым и Ю. Ю. Олешко). Одним из возможных путей снижения ускорений и ударов, действующих на транспортируемые грузы, является вторичная амортизация, т. е. введение в систему груз — транспортное средство дополнительных упругих элементов и демпферов (амортизационных узлов). Основным внешним воздействием для наземных транспортных средств является кинематическое возмущение со стороны дороги, имеющее случайный характер (высота Н и длина волны дорожных неровностей X — случайные функции). В случае неустановившегося движения для решения задачи о выборе параметров вторичной амортизации нельзя использовать спектральную теорию под-рессоривания, так как требуется определить вероятность пробоя системы амортизации, что можно сделать только, зная законы распределения перемещений. Получить законы распределения выходных величин можно решением соответствующего данной многомерной задаче уравнения Колмогорова, что сделать для системы со многими степенями свободы очень сложно. Кроме того, при решении уравнения Колмогорова получается многомерный закон распределения вектора состояния системы, который менее удобен при решении ряда задач (определение вероятности достижения заданной границы и т. д.), чем одномерные законы распределения компонент вектора состояния, получаемые методом статистических испытаний.  [c.101]

Если для системы со многими степенями свободы в качестве обобщенных координат использовать главные формы колебаний уравнения движения без демпфирования становятся несвязанными В этих координатах каждое уравнение можно решать как уравне ние, записанное для системы только с одной степенью свободы Этот подход, известный как метод нормальных форм при динами ческих исследованиях, обсуждается в данной главе и применяется к задачам, представляющим общий интерес. Сначала рассматриваются системы без демпфировсишя, а в последних частях обсуждаются специальные вопросы, относящиеся к системам с демпфированием.  [c.244]

Система с вязким или сухим треиием без позиционной силы (простейшая модель процесса виброперемещения). Некоторые важные закономерности действия вибрации на диссипативные механические системы можно выяснить при рассмотрении системы с одной степенью свободы, описываемой дифференциальным уравнением, которое приведено в п. 7 таблицы. В этом уравнении величины т и имеют смысл масс, 1=1 titt) — заданная 2я-периодическая функция Т — некоторая постоянная сила F (х)—сила сопротивления, зависящая от скорости. Указанное уравнение описывает, например, относительное движение тела массы т по плоскости, совершающей периодические колебания по закону при действии постоянной силы Т и силы сопротивления F (х) в этом случае = т. То же уравнение при т , вообще говоря, отличном от т, описывает движение тела, находящегося на неподвижной плоскости, но подверженного действию заданной периодической силы mjl (о) ) и сил Т W F (х). К изучению этого уравнения сводятся и многие Другие одномерные  [c.253]

Наиболее общим приемом составления дифференциальных уравнений движения материальной системы, подчиненной голономным связям, является применение уравнений Лагранжа. При наличии идеальных связей в эти уравнения не входят реакции связей. Если на материальную систему наложены голономные связи, то число уравнений Лагранжа равно числу степеней свободы. Применение этих уравнений особенно целесообразно при рассмотрении систем с несколькими степенями свободы. Так, в случае системы с двумя степенями свободы надо составить два дифференциальных уравнения движения. Если решать задачу, минуя уравнения Лагранжа, то необходимо из многих общих теорем и иных уравнений динамики найти два уравнения, применение которых наиболее целесообразно. Удачно выбрать уравнения и общие теоремы можно лишь на основе значительных навыков в решении задач или путем ряда неудачных проб и ошибок. Вместе с тем применение уравнений Лагранжа дает возможность быстро и безошибочно получить необходимые дифференциальные уравнения движения. Вообще говоря, при отсутствии ясного плана решения зад7чи лучше всего использовать уравнения Лагранжа. При этом существенную роль играет удачный выбор обобщенных координат.  [c.549]

Для рассмотрения связанных колебаний пространственно-много-мерных механических цепей наиболее удобны общие методы исследования линейных систем с конечным числом степеней свободы [64, 79]. Однако при исследовании довольно распространенных пространственноодномерных механических цепей для инженерных целей более удобными оказываются методы, в которых уравнения движения системы находят непосредственно из топологии рассматриваемой механической цепи на основе законов Кирхгофа. Ниже при рассмотрении простран-ственно-одномерных цепей двухполюсников введены воспринимаемые силы, параметры двухполюсников и их ассоциированные направления, выбираемые одинаковыми для всех элементов относительно принятой системы отсчета. Это позволяет применить для описания и анализа указанных цепей аппарат теории графов и дать систематический и формализованный подход к исследованию механических цепей.  [c.31]

Стохастическое поведение консервативных гамильтоновых систем известно из работы [136), где показано, что неинтегрируемость некоторой гамильтоновой системы с двумя степенями свободы приводит к возникновению хаоса. Обзор проблемы хаоса в гамильтоновых системах дан в [200]. в которой проведено интенсивное сопоставление старых и новых взглядов на вопросы интегрируемости. Учитывая некоторую аналогию между задачами небесной механики и движением точечных вихрей, можно предположить, что и в последнем случае будет иметь место хаотическое поведение. Поэтому усилия многих современных исследователей направлены на выяснение вопросов как, где и почему хаотическое поведение входит в динамику точечных вихрей В исследованиях [ 55, 93 ) рассмотрены типичные задачи этого класса. Важной особенностью хаотического движения в задачах вихревой динамики на плоскости является то, что хаос здесь возникает из полных уравнений движения Эйлера, сведенных к гамильтоновой форме, а не в результате модовых (галеркинских) аппроксимаций. Использование таких аппроксимаций является ахиллесовой пятой многих работ по изучению перехода к турбулентности. В частности, если в задаче Лоренца использовать большее число базисных функций, т.е. учесть следующие гармоники полей скорости и температуры, то полученная нелинейная система обыкновенных дифференциальных уравнений уже не обладает <саттракторными свойствами.  [c.158]


По традиции теорию возмущений развивают в рамках канонической теории поля, которая возникла как простое обобщение правил нерелятивистской квантовой механики на системы с бесконечным числом степеней свободы ). В ней постулируются гамильтониан или лагранжиан как определенная функция полей, и соответствующие уравнения движения решаются путем разложения всех входящих в них величин в степенные ряды по константе связи. К сожалению, многие коэффициенты разложения оказываются расходящимися. Их можно сделать конечными с помощью так называемой процедуры перенормировки ценой включения в уравнения движения и гамильтониан компенсирующих членов с бесконечными коэффициентами. Короче говоря, исходные уравнения не имеют решений, а уравнения, имеющие решения, на первый взгляд кажутся бессмысленными. Обычный метод придания им хоть какого-то смысла состоит в том, что бесконечные коэффициенты определяют как пределы конечных величин, предварительно вводя то или иное обрезание, устраняемое на заключительном этапе. В последние годы Брандт, Вильсон и Циммерман (см. [3, 4] и цитированные там оригинальные работы) разработали более сложный метод, предложенный впервые Вала-тином [2]. Авторы этого метода подчеркивают, что расходимости в уравнениях движения обусловлены наличием пресловутых неопределенностей в произведениях полей в одной точке, и предлагают определить эти произведения как пределы произведений операторов в различных точках. Оба метода имеют тот недостаток, что они лишают канонический формализм его простоты и интуитивной привлекательности.  [c.10]


Смотреть страницы где упоминается термин Система со многими степенями свободы уравнение движения : [c.98]    [c.60]    [c.82]    [c.14]    [c.9]    [c.65]   
Динамическая теория звука (1960) -- [ c.61 , c.64 ]



ПОИСК



Движение системы

Системы Уравнение движения

Системы со многими степенями свободы

Степени свободы системы

Степень свободы



© 2025 Mash-xxl.info Реклама на сайте