Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Работа переменной силы упругости

В качестве примера вычисления работы переменной силы на прямолинейном отрезке пути рассмотрим задачу о вычислении работы упругой силы пружины (рис. 1.133).  [c.143]

Как показывает опыт, переменные силы могут определенным образом зависеть от времени, положения тела и его скорости. В частности, от времени зависит сила тяги электровоза при постепенном выключении или включении реостата или сила, вызывающая колебания фундамента при работе мотора с плохо центрированным валом от положения тела зависит ньютонова сила тяготения или сила упругости пружины от скорости зависят силы сопротивления среды (подробнее см. 76). В заключение отметим, что все введенные в статике понятия и полученные там результаты относятся в равной мере и к переменным силам, так как условие постоянства сил нигде в статике не использовалось.  [c.180]


Как вычисляется работа переменной по модулю силы на прямолинейном отрезке пути работа силы упругости пружины  [c.152]

Демпфирующая способность, т. е. способность необратимо поглощать часть энергии деформации упругого элемента муфты при действии циклически изменяющегося вращающего момента с амплитудой АГ, наложенного на постоянный вращающий момент T (рис. 19.11, <з). Количественно демпфирующая способность может оцениваться коэффициентом относительного рассеивания / упр 5 где Aq — работа, поглощенная за один цикл нагружения муфты переменным моментом (рис. 19.11,6) (площадь петли гистерезиса) — работа сил упругой деформации муфты за четверть периода полного колебания.  [c.492]

Линейная секция состоит из рамы 6 и желоба 8, установленного на ней на наклонно расположенных коромыслах 7. Зарезонансный режим работы и применение упругой системы в виде рычагов с резиновыми втулками обеспечивают в процессе эксплуатации устойчивую работу при переменных нагрузках, незначительную передачу динамических сил на опорную раму н исключают раскачивание конструкции при прохождении через резонанс.  [c.311]

Простота вычислений может быть достигнута при помощи энергетического метода, вполне аналогичного известному методу С. П. Тимошенко. В самом деле, соотношения (66.19) можно рассматривать как соотношения задачи об устойчивости плоской формы изгиба упругой полосы переменного сечения, тогда энергетическое уравнение Тимошенко полностью сохраняет свой вид. Мы получим это уравнение, приравнивая при выпучивании энергию бокового изгиба и кручения работе внешних сил.  [c.284]

Поршневые кольца, в особенности компрессионные, работают в условиях высоких температур. Двигаясь при наличии полужидкостного (и даже сухого) трения с большой переменной скоростью скольжения, кольца в то же время подвергаются воздействию значительных сил давления газов, внутренних сил упругости и сил трения.  [c.158]

Решения реализуются при помощи. различных вариантов метода последовательных приближений (А. А. Ильюшин, 1948 И. А. Биргер, 1951, и др.) или численно. В первом случае нелинейные члены переносятся в правые части уравнений или включаются в коэффициенты упругости , затем в той или иной форме применяется метод последовательных приближений. На каждом этапе приближения необходимо решить линейную задачу теории упругости, но с дополнительными объемными силами ( метод упругих решений ) или с измененными коэффициентами упругости ( метод переменных параметров упругости ). Процессы эти весьма трудоемки, и в неодномерных задачах редко удается построить более чем одно-два приближения. Сходимость большей части используемых процессов ее изучена. Сходимость метода упругих решений при определенных условиях установлена в работах А. И. Кошелева (1955) и С. Г. Петровой  [c.116]


Крутильные колебания коленчатого вала. Если носок вала закрепить неподвижно, а к маховику приложить силу, коленчатый вал будет скручен на некоторый угол. Если прекратить действие скручивающей силы, то вал под влиянием сил упругости и сил инерции маховика будет раскручиваться и начнет колебаться с частотой, зависящей от его длины, поперечного сечения и материала. Такие колебания носят название свободных, упругих колебаний кручения, а их частота — собственной частоты. При работе двигателя переменные силы 5 (см. рис. 5) в течение цикла создают второй вид колебаний вала — вынужденные колебания, частота которых зависит от числа оборотов вала, числа цилиндров и тактности двигателя.  [c.26]

Основными источниками возникновения автоколебаний являются изменение сил резания вследствие неоднородности механических свойств обрабатываемого материала появление переменной силы резания за счет срыва наростов изменение сил трения на поверхностях инструмента из-за изменения скорости резания в процессе работы следы вибраций от предыдущего прохода, вызывающие изменения сил резания и упругие деформации обрабатываемой детали и резца.  [c.51]

К числу конструкционных деталей относятся пружины и рессоры. Назначение пружин и рессор состоит в поглощении живой силы при ударе без получения остаточной дефор.мации. Пружины и рессоры должны работать в области упругих деформаций в условиях приложения динамической нагрузки, часто с большим числом перемен. Сталь для рессор и пружин должна обладать высоким пределом упругости и повышенным сопротивлением усталости. Кремний к повышенное содержание углерода резко повышают пределы пропорциональности, текучести и выносливости. Поэтому для рессор и пружин получили распространение в качестве типовых и кремни стые стали, в которые для улучшения закаливаемости вводят небольшое количество хрома, марганца, никеля.  [c.77]

Важной особенностью аэродинамических сил является то, что они могут зависеть от перемещений и деформаций части вертолета, на которую действуют. Например, вследствие действия аэродинамических сил возникают колебания лопастей, при которых в свою очередь изменяются и аэродинамические силы. В определенных случаях при совместном действии аэродинамических, инерционных сил и сил упругости колебания конструкции и действующие в ней переменные напряжения начинают увеличиваться по времени до опасных размеров, несмотря на то, что внешние условия (параметры режима полета) не изменяются. Имеет место аэроупругая или механическая динамическая неустойчивость конструкции. Для обеспечения безопасной эксплуатации вертолета необходимо устранить возможность возникновения неустойчивости конструкции, что также является одной из задач комплекса работ по прочности.  [c.23]

Прижатие катков является необходимым условием работы передач. Его осуществляют на практике либо постоянной, либо переменной силой, зависящей от внещней нагрузки. Постоянное прижатие получают за счет предварительной деформации при сборке упругих элементов системы (например, катков, специальных пружин и др.), использованием сил тяжести и т. д. Регулируемое прижатие требует при.менения специальных нажимных устройств (винтовых, шариковых и др.).  [c.122]

Работа проталкивания. Эта работа, затрачиваемая на перемещение рабочего тела в канале, совершается потоком против действия внешних сил. Для определения работы проталкивания рассмотрим стационарный поток идеальной упругой жидкости, движущейся в канале переменного сечения (рис. 13.1) При установившемся режиме через любое поперечное сечение (в том числе через сечения /—1 и 2—2) в единицу времени протекает одинаковая масса газа М. Допустим, что па невесомый поршень А площадью fi (сечение J—/) действует давление pi, а на поршень Б площадью (сечение 2—2) — давление р . Истечение рабочего тела происходит под действием разности давлений pi — р. ). Тогда под действием внешней силы р Р поршень А передвинется на расстояние S] и над рабочим телом будет произведена работа  [c.8]


На установке можно испытывать образцы при изгибе, растяжении и сжатии. Для измерения силы удара в одной из опор устанавливают пьезокварцевый датчик. Прогиб образца в центральной части измеряют с помощью специальной приставки, состоящей из фотоэлемента, лампы освещения и запирающей иглы. Действительные напряжения на поверхности образца в этом случае остаются неизвестными, так как трудно определить потери энергии однократного удара на местные смятия и контактные напряжения соударяющихся деталей из-за неучитываемых неупругих деформаций, возникающих в материале в процессе повторно-переменного нагружения. Поэтому в работе [162] определена общая деформация поверхностного слоя материала образца, и эта общая деформация разделена на упругую и неупругую составляющие.  [c.259]

В работах [2, 18] рассмотрены вопросы нагруженности образца и точности определения нагруженности в связи с возникновением дополнительных динамических процессов в упругой системе. ВвиДу специфического характера возбуждения циклически меняющихся напряжений от статически приложенного усилия переменная составляющая нагрузки не входит в измеряемую величину и для выяснения ее роли необходимо рассмотреть влияние сил инерции на результирующую напряженность образца. Показано, что это влияние, неодинаковое для различных волокон образца, становится наибольшим в плоскости расположения эксцентриситета. В этом случае получено следующее выражение для напряжений в зависимости от действительного нагружающего усилия  [c.89]

Колебания в асинхронных двигателях. В асинхронных двигателях переменного тока весьма мал зазор между ротором и статором. Поэтому силы одностороннего магнитного притяжения между ротором и статором, возникающие при поперечных колебаниях ротора, оказываются сравнимыми с неуравновешенными центробежными силами. В случае недостаточной жесткости вала или опор ротора значительные колебания ротора могут привести к задеванию его за статор, а следовательно, и к выходу из строя двигателя. Формулы для вычисления сил одностороннего магнитного притяжения при эксцентричном расположении ротора относительно статора для электрических машин, имеющих произвольное число пар полюсов, можно найти в работе [14]. При малых колебаниях эти силы пропорциональны смещению ротора относительно статора и направлены в сторону смещения, т. е. при малых колебаниях вал ротора можно рассматривать как стержень, лежащий на упругом основании с отрицательным коэффициентом основания [9]. Наблюдались повышенные вибрации и усталостные разрушения стержней короткозамкнутой обмотки ротора, которые были устранены расчеканкой зубцов ротора для закрепления стержней в пазах.  [c.523]

Ниже мы рассмотрим вариационную постановку задачи о динамическом росте трещины в линейно-упругих, а также нелинейных (упругих или неупругих) телах. Вначале исследуем динамику развития трещины в линейно-упругом материале. Рассмотрим два момента времени t и + в соответствии с которыми переменные, описывающие поля, обозначаются индексами 1 и 2. Пусть в момент времени ti объем тела будет l/ , внешняя граница тела с заданными нагрузками Т будет 5<л, поверхность трещины равна 5 . Предположим, что между моментами ti и ta площадь трещины изменяется на AS = S 2 — 5 . Для простоты считаем, что поверхность трещины свободна от приложенных нагрузок. Более общий случай, учитывающий объемные силы и нагрузку, приложенную к поверхности трещины, рассмотрен в [9, 10]. Принцип виртуальной работы, определяющий движение твердого тела между моментами ti и г г, когда происходит рост трещины, определяется следующим образом 19,10  [c.274]

Методы теории функций комплексного переменного, как показал впервые С. Г. Лехницкий (его работы были опубликованы в тридцатых годах см., например, [1]), применимы и к случаю однородного анизотропного тела, имеющего в каждой точке плоскость упругой симметрии, параллельную данной плоскости, которую мы примем за плоскость Оху. Если тело подвергается плоской деформации, параллельной этой плоскости, то функция напряжений (функция Эри) удовлетворяет вместо бигармонического уравнения более общему уравнению (имеется в виду случай отсутствия объемных сил)  [c.603]

Определение потенциалов. Кажется очевидным, что двумерная теория упругости представляет собой ту область, где следует использовать методы функций комплексного переменного, однако первые работы Колосова ), а позднее Мусхелишвили ), до последних лет вне России оставались неизвестными. Основные уравнения независимо были выведены Стивенсоном ), метод которого и использован здесь, поскольку он кажется более прямо ведуш им к цели и, в отличие от работ Колосова и Мусхелишвили, здесь учитываются массовые силы.  [c.87]

Решение. Работа упругих сил стержня при удлинении на <11 равна —Рй1, поэтому первое начало термодинамики принимает вид й С1=(1Е — Р<И, где —> энергия стержня. Запишем равенство (2, 12) в переменных /, 7 и в переменных Р, Т, введя обозначение  [c.62]

Как показывают исследования зубофрезерного станка, проведенные в Станкине, при встречном сверху способе зубофрезерования каретка в основном работает на отжим от направляющих. При этом снижается жесткость тех конструкций зубофрезерных станков, у которых каретка прикрепляется к направляющим при помощи планок, так как планки обладают меньшей жесткостью по сравнению с самой кареткой. Так как сила резания имеет пульсирующий характер, то и деформации суппортного узла в процессе фрезерования тоже все время изменяются. Эти переменные деформации усиливают интенсивность колебаний упругой системы станка, в частности суппортного узла, внося добавочное изменение сечения стружки.  [c.346]


Сила упругости пружины, восстанавливающей свою форму, направлена в сторону движения шарика. Работа переменной силы упругости на перемещении MqMi — Ii определяется по формуле (61.4)  [c.172]

Рассмотренная методика выбора мощности основывается на технологии работ с клапанами, когда удар вверх для среза штифтов осуществляется гидравлическим яссом. При аварийном выходе из строя гидравлического ясса удар вверх осуществляется механическим яссом. Определение при это.м нагрузочной пусковой характеристики аналитическим путем значительно усложняется по сравнению с рассмотренным выще, так как кроме учета разгона инерционных масс привода барабана и проволоки с инструментом, следует учитывать влияние переменной силы упругой деформации проволоки, возникающей в процессе движения инструмента вверх в жидкой среде.  [c.125]

Результаты исследований в области теории малых упруго-пластических деформаций, а также обобщение теорем о работе сил упруго-пластических деформирующихся систем позволили рассмотреть предельные состояния конструкций и их элементов по критерию допустимых перемещений и допустимых нагрузок. Применение метода переменных параметров упругости и итерации для составления и решения соответствующих уравнений в ряде случаев в интегральной форме дало возможность решить большой круг конкретных задач расчета по предельным состояниям для брусьев, пластинок, дисков, оболочек, толстостенных резервуаров. Тем самым была найдена возможность использования резервов несущей способности детален и конструкций, связанных с уируго-нластическим нерераспределением напряжений и параметрами диаграммы деформирования материала.  [c.41]

При работе машин переменные силы расшатывают соединения, и если болт не обладает достаточной упругостью, то стык может раскрыться, нарушится плотность соединения. Нейлоно вые болты, обладая высокими упругими свойствами, позволяют постоянно удерживать соединение в затянутом состоянии.  [c.167]

К подвижной системе 2 электродинамического возбудителя 1 колебаний через фланец 3 присоединяется резонансная мембрана 4, несущая активный захват 5 для испытуемого образца 6. Второй конец образца зажимают в захват 7, расположенный на упругом элементе датчика 8 силы, имеющего тепзорезисторные преобразователи. Датчик силы и регистрирующая аппаратура 15 образуют динамометр для измерения переменных сил, действующих на испытуемый образец. Датчик силы 8 укреплен на инерционном элементе 10 с большой массой. Инерционный элемент для снижения потерь энергии подвешен на гибких тросах 9. К инерционному элементу прикреплен пьезоэлектрический датчик 11 виброускорения. Сигнал с датчика ускорения подается на блок 18 управления, входящий в комплект вибростенда ВЭДС-100. Этот блок содержит измеритель виброускорения, задающий генератор со сканированием частоты и систему автоматического поддержания заданного виброускорения. Выходной сигнал с блока 18 поступает на вход усилителя 21 мощности, питающего через резистор 14 подвижную катушку электродинамического возбудителя колебаний. Машина работает в режиме прямого эластичного нагружения на резонансной частоте, определяемой жесткостью испытуемого образца.  [c.131]

Приведем несколько примеров переменных сил. На упругой балке установлен (рис. 1.2, а) не вполне уравновешенный двигатель. При заданном режиме работы двигателя сила давления на конструкцию, обусловленная неуравновешенностью, является функцией времени заметим, что эта сила принимается нами не зависящей от того, как под ее воздействием колеблется конструкция. В этих условиях на кострукцию действует сила Р(/), заданная как явная функция времени I (здесь мы не касаемся вопроса о том, каким образом указанная конструкция схематизируется в виде материальной точки). Обратимся к другому примеру.  [c.18]

Крутильные колебания коленчатого вала. Если носок вала закрепить неподвижно, а к маховику приложить силу, коленчатый вал будет скручен на некоторый угол. Если прекратить действие скручивающей силы, то вал гюд влиянием сил упругости и сил инерции маховика будет раскручиваться и начнет колебаться с частотой, зав1 сящей от его длины, поперечного сечения и материала. Такие колебания называют свободными, yнpyги ш коле-баниялш кручения, а их частоту — собственной частотой. При работе двигателя переменные силы 5 (сы. рнс. 4) Б течение цик-  [c.26]

Сила упругости пружины, восстанавливающей свою форму, направлена в сторону движення шарика. Работа переменной с( лы упругости на перемещении Л/оЛ/i = д = h определяется по формуле (61,4)i  [c.406]

В состоянии покоя указанная деформация вызывается силой yVij. Для осуществления качения к колесу нужно приложить движущую силу Р, работа которой затрачивается на деформацию и трение скольжения в непрерывно вступающих в контакт новых поверхностных слоях колеса и плоскости. Так как при качении колеса вправо упругие деформации колеса и плоскости на участке СА исчезают не мгновенно (вследствие внутреннего трения между частицами материала), то давление на участке СА оказывается меньше, чем на участке AD, и реакция N21 (равнодействующая давления плоскости на колесо) смещается от точки А в сторону качения на расстояние к, т. е. в точку В. При качении колеса впереди его на участке AD образуется как бы волнооб-, разный подъем, через который колесу непрерывно надо перекаты- ваться. Переменное напряженное состояние, перемещающееся вместе с зоной контакта, вызывает в колесе и в плоскости колебания, затухающие вследствие внутреннего трения.  [c.87]

Натяжение ремня — необходимое условие работы ременных передач. Оно осуществляется 1) вследствие упругости ремня - укорочением его при сшивке, передвижением одного вала (рис. 251, а) или с помощью нажимного ролика 2) под действием силы тяжести качающейся системы или силы пружины 3) автоматически, в результате реактивного момента, возникающего на статоре двигателя (рис. 251,6). Так как. на практике большинство передач работает с переменным режимом нагрузки, то ремни с постоянным предварительным натяжением в период недогрузок оказываются излишне натянутыми, что ведет к резкому снижению долговечнорти. С этих позиций целесообразнее применять третий способ, при котором натяжение меняется в зависимости от нагрузки и срок службы ремня наибольший. Однако автоматическое натяжение в реверсивных передачах с непараллельными осями валов применить нельзя. Для оценки ременной передачи сравним ее с зубчатой передачей как наиболее распространенной. При этом можно отметить следующие основные преимущества ременной передачи 1) плавность и бесшумность работы, обусловленные эластичностью ремня и позволяющие работать при высоких скоростях 2) предохранение механизмов от резких колебаний нагрузки вследствие упругости ремня 3) предохранение механизмов от перегрузки за счет возможного проскальзывания ремня 4) возможность передачи движения на значительное расстояние (более 15 м) при малых диаметрах шкивов 5) простота конструкции и эксплуатации. Основными недостатками ременной передачи являются 1) повышенная нагрузка на валы и их опоры, связанная с большим предварительным натяжением ремня 2) некоторое непостоянство передаточного отношения из-за наличия упругого скольжения 3) низкая долговечность ремня (в пределах от 1000 до 5000 ч) 4) невозможность выполнения малогабаритных передач. Ременные передачи применяют  [c.278]


Помимо величины запаса статической устойчивости и величины неустойчивости, рассмотрены и другие критерии выбора и сравнительной оценки походок. Одним из них явился критерий оценки походок по их комфортабельности. В работах [4, 5] показано, что, несмотря на полную развязку корпуса экипажа от неровностей дороги, достигаемую автоматической адаптацией движителей, движение экипажа не будет полностью комфортабельным. В результате перераспределения весовых нагрузок в ногах экипажа, возникающего в процессе шагания, а также в силу того, что как сами ноги, так и грунт обладают некоторой упругостью, возникают вертикальные смещения точек подвеса ног к корпусу и связанные с этим девиации корпуса — его угловые и линейные (по вертикали) отклонения от заданного положения в пространстве. Здесь свойство переменности структуры экипажа приводит к тому, что, помимо необходимости рассмотрения многократной статической неопределенности системы при нахождении опорных реакций в ногах, следует учитывать изменение кратности этой неопределенности при каждом подъеме или постановке одной, двух и даже трех ног шагающей машины одновременно.  [c.33]

Немецкий ученый Ф. Энгессер, работая над границами применения формулы Эйлера, пришел к выводу, что можно расширить эти границы, если заменить в ней постоянный модуль упругости переменной величиной, которую он назвал касательным модулем упругости. Эта величина, в свою очередь, выражала отношение напряжения материала к относительной его деформации, т. е. изменению длины стерншя по сравнению с его первоначальными размерами [40, с. 351, 352, 356—359]. Касательный модуль дал Энгессеру возможность вычислять критические напряжения для стержней из материалов, не подчиняющихся закону Гука, а также из строительной стали при напряжениях выше предела упругости. В связи с этим предложением у Энгессера возникла дискуссия с Ясинским, который утверждал, что сжимающие напряжения на выпуклой стороне стержня при его выпучивании уменьшаются и что испытания, проведенныеБаушингером, доказывают необходимость пользоваться в этой области поперечного сечения постоянным модулем упругости, а вовсе не касательным модулем [43, с. 214]. Этот спор закончился тем, что Энгессер признал правоту Ясинского, переработал свою теорию и ввел для двух областей поперечного сечения два различных модуля. Исследуя влияние поперечной силы на величину критической нагрузки в стойках, он нашел, что эта величина для сплошных и сквозных решений различна. В сплошных ее влияние мало и им можно пренебречь, а в сквозных оно может оказаться значительным. Энгессер вывел формулы для определения того отношения, при котором  [c.254]

Это выражение мы продиференцируем по с, считая с независимым от k, несмотря на то, что мы уже выразили k через с. Мы так должны сделать потому, что при разыскании минимума имеем право придавать каждому параметру произвольное значение, неззЕисимое от других поэтому мы должны определить значение с таким образом, чтобы для него, при сохранении своих значений всеми остальными переменными, работа упругих сил получила минимальное значение. Мы получим  [c.157]

Определение деформаций приходится производить как от сил, действующих в вертикальной плоскости, так иногда еще одновременно и от сил, действующих в горизонтальной плоскости, например при расчете стрел. При этом рассчитываемый элемент может иметь переменный момент инерции по длине, который в расчетной схеме заменяется изменяющимся ступенчато. Определение графоаналитически ординат упругой линии стрелы при расчете ее деформационным методом приведено в работе [24], Наиболее целесообразно производить подобные расчеты с помощью ЭВМ,  [c.374]

Под действием сил, воспринимаемых коленчатым валом, его элементы деформируются и в материале вала возникают напряжения сжатия, растяжения, изгиба, кручения и среза. Учитывая, что нагружающие силы и создаваемые ими моменты переменны по величине и направлению, возникающие напряжения будут также знакопеременны, а деформации при этом будут проявляться в виде перемещения — колебаний элементов вала относительно их нейтраль ного положения. Колебания возникают также и при кратковременном пульсирующем действии силы в одном направлении вследствие возврата работы (в виде обратного перемещения элементов вала под действием упругих внутренних сил), накопленной материалом при его деформации. Такие колебания совершаются с определенной частотой (частотой собственных колебаний), присущей данной детали, но они обычно постепенно затухают.  [c.312]


Смотреть страницы где упоминается термин Работа переменной силы упругости : [c.54]    [c.411]    [c.20]    [c.50]    [c.117]    [c.247]    [c.324]    [c.83]    [c.389]    [c.596]    [c.32]   
Теоретическая механика в примерах и задачах Том 2 Динамика издание восьмое (1991) -- [ c.323 ]



ПОИСК



Работа сил упругой

Работа силы

Работа силы упругости

Работа упругой силы

Работа упругости

Сила переменная

Сила упругая

Сила упругости



© 2025 Mash-xxl.info Реклама на сайте