Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Обратная связь упругая

Кнопочные и клавишные выключатели и переключатели должны иметь в момент нажатия на приводной элемент обратную связь (упругое сопротивление пальцу или кисти руки человека-оператора, а после завершения действия сигнал механический — резкое падение упругого сопротивления, акустический — щелчок или визуальный — световой сигнал).  [c.104]

Прямолинейная обратная связь упругого последействия с прочностью прессовок хорошо иллюстрируется данными Д. Мея [12-5], исследовавшего прессование порошков искусственного графита.  [c.216]


Частотные характеристики определяют поведение элемента или системы при гармонических изменениях входного воздействия. Регуляторы, входящие в систему, могут быть без обратной связи, т. е. без отражения влияния характеристики регулирующего органа на регулируемую величину, с жесткой обратной связью, когда иа работе регулирующего органа отражается состояние регулируемой величины, или с упругой обратной связью (изодромной), когда регулирующий орган изменяет свое положение лишь после того, как процесс самовыравнивания регулируемой величины практически закончился.  [c.414]

На рис. 88,2 показан центробежный регулятор непрямого действия с упругой обратной связью (изодромный регулятор). Применение этого регулятора обеспечивает получение после процесса регулирования той же самой угловой скорости вала двигателя, что и в начале процесса регулирования. С этой целью в обратную связь введен дополнительный гидроци-линдр 8 с отверстиями в поршне, через которые перетекает  [c.310]

В замкнутой динамической системе промышленного робота можно выделить подсистему привода с передаточной функцией В рассматриваемой конструкции робота применен гидравлический привод в качестве управляющего элемента, в котором используется двухкаскадный гидроусилитель сопло—заслонка-золотник с упругой обратной связью по положению золотника. Расчетная схема  [c.65]

Существующие системы программного управления применяются с устройствами обратной связи, которые основываются на косвенном методе контроля. Это значит, что в процессе обработки точность обрабатываемых деталей оценивается поточности перемещения исполнительного органа. При такой оценке заведомо не учитываются отклонения в форме, размерах и положении обрабатываемых поверхностей, возникающие в результате упругих деформаций системы СПИД.  [c.154]

Известно также, что при возникновении колебаний в машине имеется обратная связь между ее упругой системой и данным рабочим процессом или трением, которые являются источником колебаний.  [c.32]

На рис. 1, а обозначено сг(т) —переменные состояния станка как объекта регулирования относительное положение заготовки и инструмента, параметры качества обрабатываемых деталей и т. д. г/г, у, — заданные (начальные) значения переменных состояния (положения и перемещения) систем I и П, определяющих положение заготовки и инструмента (они могут быть заданы конструкцией станка при его настройке, т. е. это размеры отдельных деталей станка или заданные настройкой положения его узлов, входящие в размерные цепи обрабатываемых деталей) уц х), уц х) — фактические значения переменных состояния (положения и перемещения) системы I и И, отличающиеся от г/г, г/j из-за влияния возмущающих воздействий /г(т), /Ит) (различных видов энергии, действующих на станок — механической, тепловой, химической и др.). При учете известного [3], [5] взаимного влияния процессов, протекающих в станках (упругих, тепловых деформаций, износа, коррозии, коробления), друг на друга, а также на источники энергий, вызывающих эти процессы, рассматриваемая функциональная схема должна быть замкнутой. При этом обратная связь воз-  [c.204]


Противодействующий момент в таком устройстве создается механической пружиной и электромагнитной системой с обратной связью. Последняя отличается большей стабильностью и легким управлением в результате изменения параметров электрической цепи обратной связи. В частности, используя дополнительную катушку 4, кроме катушек 3, включенных непосредственно в цепи электродов механотрона, мы получаем возможность осуществить электромагнитное. демпфирование колебаний подвижного элемента лампы. Для этого оказывается необходимым подавать в катушку 4 ток, сдвинутый в соответствующей фазе относительно тока в диагонали моста, в который включен механотрон. Для такой системы с обратной связью выполняется условие чем больше значение отношения противодействующего момента, создаваемого обратной связью, к противодействующему моменту пружины (мембраны) механотрона, тем выше стабильность работы устройства, так как в нем меньше сказываются нестабильности упругих свойств пружины, ее упругое последействие и остаточная деформация.  [c.138]

Приборы и устройства системы Кристалл служат для комплектования автоматических регуляторов различной структуры с постоянной скоростью исполнительного механизма (астатические), с жесткой обратной связью (статические или пропорциональные) и с упругой обратной связью (изодромные).  [c.110]

Регулирование процесса горения топлива производится по схеме, предусматривающей устройство жесткой и упругой обратной связи. При этом в паровых котлах эта схема должна обеспечивать заданное давление пара в барабане  [c.112]

Схема регулирования расхода топлива и воздуха в котле со смесительными горелками представлена на рис. 31, в, г. В случае работы котла на резервном жидком топливе предусматривается переключатель вида топлива. На вход усилителя регулятора воздуха вводятся сигналы от дифференциального тягомера, измеряющего расход воздуха, и от датчиков-дифманометров, измеряющих расход пара и газа (мазута). При этом в регуляторе давления пара должен быть применен исполнительный механизм ГИМ-Д2И, имеющий одно устройство жесткой обратной связи (Д) и два устройства упругой обратной связи (И). Регулятор топлива воздействует на регулирующий орган подачи топлива — газовую заслонку или мазутный клапан, а регулятор расхода воздуха — на привод направляющего аппарата дутьевого вентилятора.  [c.113]

При закрытом дросселе получается электрический сигнал жесткой обратной связи по положению сервомотора, а при открытом дросселе — электрический сигнал упругой обратной связи с постоянной времени изодрома, зависящей от степени открытия дросселя.  [c.123]

Внутри кожуха прибора находится устройство упругой и жесткой обратной связи, клеммник и-микровыключатели. Устройство обратной связи состоит из сильфонов I и 3, двух дифференциально-трансформаторных датчиков 7 и 8, дросселя переменного сечения 2 и датчика жесткой обратной связи 10. При повороте вала электрического исполнительного механизма через посредство тяги 9, соединенной с поводком МЭО, один из сильфонов сжимается, а другой растягивается. За счет изменения объема задающей пары сильфонов возникает перепад давления воздуха, преобра-  [c.124]

Электронно-гидравлическая система автоматического регулирования Кристалл представляет собой комплекс приборов и устройств, позволяющих создавать автоматические регуляторы различной структуры (с постоянной скоростью исполнительного механизма, с жесткой обратной связью и с упругой обратной связью). Система Кристалл отличается высокой надежностью, так как в  [c.123]

Регулирование теплопроизводительности котла типа ТВГ осуществляется путем изменения количества газа, подаваемого в котел в зависимости от заданного параметра— температуры воды на выходе из котла (при работе в базовом режиме) либо температуры воды, подаваемой в теплосеть (при работе в регулирующем режиме). Для повышения качества регулирования в схему введена упругая отрицательная обратная связь по положению регулирующего органа (заслонки на газопроводе  [c.243]


Изменение расхода газа вызывает появление сигнала рассогласования на выходе измерительной схемы регулятора. В зависимости от знака сигнала рассогласования исполнительный механизм изменяет положение направляющего аппарата вентилятора, что приводит к изменению подачи воздуха в котел. В качестве датчиков в схеме используется диафрагма с дифманометром для измерения расхода газа и пневмометрическая трубка с дифманометром для измерения расхода воздуха. Для повышения качества регулирования в схему введена упругая отрицательная обратная связь по положению регулирующего органа.  [c.246]

Конденсация водяных паров на конвективной поверхности котлов происходит при температуре воды на входе в котел, равной для природного газа примерно 56 С. Для поддержания температуры воды на входе в котлы не ниже 70 °С служит регулятор рециркуляции. Как показывает практика, отсутствие регулятора рециркуляции приводит к коррозии конвективной поверхности котлоагрегата и быстрому выходу ее из строя. -В качестве датчика в схеме регулятора рециркуляции используется термометр сопротивления, устанавливаемый в трубопроводе обратной воды перед котлами. Сигнал от термометра сопротивления поступает на вход измерительного блока регулятора. Для улучшения процесса регулирования в схему вводится упругая обратная связь по положению регулирующего органа. При отклонении температуры воды от заданной на выходе измерительного блока регулятора появляется сигнал рассогласования. В зависимости от знака этого сигнала происходит изменение положения регулирующего клапана, т. е. изменение в нужных пределах кратности рециркуляции. Результатом этого явится восстановление заданной температуры воды перед котлами.  [c.251]

Передаточные функции звеньев процесса резания, упругой системы и обратной связи соответственно равны  [c.484]

При обработке деталей на станке осуществляются несколько рабочих процессов (резание, трение), воздействующих на упругую систему, вызывая смещение деталей, образующих подвижное соединение, в котором протекает рабочий процесс. Но наблюдается и обратное воздействие. Например, при смещениях инструмента и заготовки изменяется глубина и сила резания. Это заставляет рассматривать динамическую систему как замкнутую с отрицательной обратной связью. В замкнутой системе силы резания являются внутренними воздействиями. Проанализируем влияние на систему внешних воздействий. Периодические силы возникают из-за погрешностей зубчатых передач, неуравновешенности вращающихся деталей, передаваемых фундаменту станка от другого оборудования, и т. п. внещние воздействия на процесс резания связаны с переменностью сечения срезаемого слоя, скорости резания при обтачивании торцов и т. п.  [c.21]

Такая обработка путем изменения подачи воздействует на величину силы резания, а тем самым и на изменения величины упругого перемещения системы СПИД для сохранения постоянства размера динамической настройки Ад. В ряде случаев системы автоматического регулирования могут быть улучшены путем введения в основной контур воздействия дополнительных обратных связей (например, для компенсации вибраций, порождаемых быстровращающейся деталью, используемой для измерения упругих перемещений, для увеличения быстродействия системы регулирования и т. д.). Отсчетное устройство 6 показывает величину упругого перемещения, его отклонения или изменения силы резания.  [c.336]

Точность работы замкнутых систем программного управления шаговыми двигателями существенно зависит от точности датчиков обратной связи, от упругих деформаций в кинематических передачах, от неконтролируемых параметрических и внешних возмущений. Как показали эксперименты на лабораторном образце робота с шаговыми приводами, точность позиционирования ма-  [c.152]

Динамическая модель такой виброзащитной системы показана на рис. 10.49 (/ — изолируемая масса 2 — упругий элемент 3 — обратная связь по положению 4 силовой гидроцилиндр 5 — масса 6 -- пружина 7 — сопло 8 заслонка, 9 — постоянный дроссель 10 -- регулируемый дроссель // - питаюи1ий наоос).  [c.306]

На рис. 10.51 приведена схема гидравлической виброзащитной системы кресла I человека-оператора, содержащая упругий элемент 2, гидроцилиндр J, силовой стабилизатор 4 н виде датчика пульсации давления рабочей жидкости и элемента типа сопло -заслонка, обратные связи. 5, 6 по положению и по ускорению. Обратная связь по положению обеспечивает стабилизацию кресла от-носи1ельно фундамента. Обратная связь по ускорению введена для предсказания возмущающего воздействия с опережением, необходимым для компенсации возмущения и [ювышения эффективности системы в резонансных зонах тела человека-оператора. Система позволяет свести до минимума вертикальные колебания кресла с оператором.  [c.306]

На рис. 8.7 показана схема устройства манометра абсолютного давления МАС-П с пневмосиловым преобразователем. Прибор состоит из измерительного блока I, пневмосилового преобразователя 4 и пневматического усилителя мощности 7. Измерительный блок включает два сильфона с известной эффективней площадью (0,4 или 2 см ). Из одного сильфона 12 воздух откачан, сам сильфон герметизирован. В полость другого сильфона 11 подается измеряемое давление р. Под действием последнего и упругих сил сильфонов к рычагу 2 будет приложено пропорциональное этому давлению усилие Р. Это усилие через рычажный передаточный механизм 2 и 5 автоматически уравновешивается усилием Ро.с от сильфона обратной связи 10, полость которого соединена с магистралью выходного давления, поступающего из усилителя мощности 7, к которому подводится с помощью канала 9 сжатый воздух под давлением (0,14 0,014) МПа, контролируемый манометром 8. Усилитель мощности формирует выходное давление под воздействием управляющего сигнала сжатого воздуха в линии сопла, которое зависит от взаимного положения сопла б и заслонки 5 индикатора рассогласования положение заслонки определяется положением рычага 2.  [c.160]


Образец 1 колеблется под действием электромагнитного поля резонансной машины 2, которая питается через стабилизатор СН-500Н и автотрансформатор ЛАТР-9 переменным напряжением с частотой 50 Гц, пропорциональным амплитуде деформации. Образец соединен жестким рычагом обратной связи 3 с упругой балочкой из полоски фосфористой бронзы толщиной 0,1 мм, у основания которой наклеен тензодатчик. Электрический сигнал с датчика, усиленный тензостанцией ТА-5, регистрируется потенциометром ЭПП-09. К усилителю УЭ-119 потенциометра ЭПП-09 параллельно к двигателю РД-09 привода каретки включен еще один двигатель РД-09, который замыкается зубчатой муфтой с осью автотрансформатора ЛАТР-9. В результате изменения заданной амплитуды деформации появляется сигнал рассогласования. Двигатель привода автотрансформатора, управляемый этим сигналом, приводит систему к равновесию.  [c.198]

На структурной схеме (рис. 87, б) обозначено /—усилитель (считается безынерционным) // —возбудитель III — генератор / V — двигатель постоянного тока с независимым возбуждением V — инерционное звено двигателя (с учетом масс, жестко связанных с якорем двигателя) / —внутренняя обратная связь по скорости двигателя VII — обратная связь по скорости двигателя VIII — инерционное звено рабочей машины IX — упруго-диссипативное звено рабочей машины.  [c.328]

В некоторых системах стабилизации скорости с электроприводом постоянного тока используются комбинированные обратные связи [88]. В частности, в машинных агрегатах с нежесткими передаточными механизмами стабилизация скорости исполнительного устройства достигается введением обратных связей по скорости выходного звена, упругому моменту в передачах и его производным [52]. Такие системы используются в. современных автоматизированных многодвигательных электроприводах непрерывных технологических линий по производству и обработке пленочных полимерных материалов, различных изделий из резины,  [c.116]

Если учесть, что моменты могут в первом приближепии считаться пропорциональными деформациям 6г упругих звеньев, то можно сказать, что сигнал обратной связи (6.28) содержит информацию о динамических ошибках по положению и по скорости в различных точках механической системы. Ниже мы подробно рассмотрим преимущества многокоптурной системы управления покажем, что она в принципе позволяет существенно увеличить эффективность управления при сохранении условий устойчивости системы.  [c.117]

Современные поршневые двигатели внутреннего сгорания, используемые в качестве источников энергии в машинных агрегатах различного назначения, как правило, снабжаются всере-жимными или многорежимными регуляторами скорости вращения ДВС центробежного тина [28]. Силовая цепь машинного агрегата и управляющее устройство (регулятор) схематизируются в виде модели с направленными звеньями. Наиболее сложное звено в этом иредставлении — динaмuчe aя модель силовой цени, отражающая упруго-инерционные, диссипативные и возмущающие свойства собственно двигателя, связанных с ним передаточных механизмов и потребителя энергии (рабочей машины, движителя, исполнительного устройства). Эта модель охвачена отрицательной обратной связью но угловой скорости двигателя (см. рис. 17, а). Реализующий обратную связь регулятор в общем случае включает в себя центробежный измеритель скорости, усилительные элементы и исполнительный орган (рейка топливного насоса, заслонка карбюратора) (см. рис. 17, б). Эти механизмы схематизируются на основе типовых звеньев (первого или второго порядка) направленного действия [28]. Импульсный характер воздействия псполиительпого органа регулятора на поток энергии в ДВС может быть схематизирован, как показано в гл. I, на основе типовых (колебательных) направленных звеньев второго порядка.  [c.140]

При исследовании влияния параметров механизма поворота руки па точность позициопирования задавалось паспортное значение погрешности позиционирования и оценивалось время, по истечении которого колебания захвата руки не превышали этой величины. Оценивалось влияние следующих параметров коэффициента усиления цепи обратной связи коэффициентов вязкого сопротивления, жесткостей механической системы, параметров и характеристик сервоклапана, модуля упругости жидкости при объемном сжатии, силы трения и т. д. Для оценки работоспособного состояния робота введен коэффициент Яд  [c.56]

Структурная схема моделируемой системы представлена на рис. 1. На основании проведенных экспериментальных исследований [3] механизм позиционирования руки робота представлен в виде трехмассовой системы с упругими и демпфирующими свойствами. Движение руки описывалось при помощи уравнений Лагранжа. Система охвачена отрицательной обратной связью по положению, где — коэффициент обратной связи — задаваемое положение руки / — ток двухкаскадного электро-гидравлического преобразователя типа сопло—заслонка—золотник с упругой обратной связью (сервоклапан) q — расход масла, поступающего в цилиндр i — передаточное отношение механизма, преобразующего поступательное движение поршня гидроцилиндра во вращательное движение руки робота F —- приведенная сила трения. Амплитудно-частотные характеристики сервоклапанов, используемых л данной конструкции робота, показали, что они  [c.67]

Рассмотрена механическая колебательная система, состоящая из источника колебаний переходного звена (упругого элемента) и нагрузки (изолируемого объекта). С целью увеличения виброизоляции нагрузки применяется электромеханическая обратная связь по силе, измеряемой в точке присоединения упругого элемента к изолируемому объекту. Исследование устойчивости системы активной виброизоляции с жестким креплением вибратора к источнику проведено с использованием иммитансного критерия при различном характере механических сопротивлений источника и нагрузки. Построены области устойчивости в плоскости оптимизирующихся в системе параметров, позволяющие синтезировать систему активной виброизоляции, обеспечивающую максимальное гашение вибрации в заданной полосе частот при сохранении номинальной жесткости упругого элемента в диапазоне низких частот. Определены аналитически и построены границы областей внутренней устойчивости активного элемента при различных типах используемого фильтра верхних частот.  [c.111]

Характерной особенностью роботов с электроприводом является наличие высокочастотной составляющей на осциллограммах ускорения, что связано с применением редукторов, поэтому при экспериментальном исследовании роботов этого типа необходимо использование акселерометров с собственной частотой не менее 250—300 Гц. Осциллограммы скорости, записанные на захвате и с тахогенератора обратной связи, несколько отличаются друг от друга, что объясняется упругими свойствами руки и наличием зазоров в элементах передачи движения. Закон движения руки у роботов с электроприводом, как правило, близок к треугольному, причем время разгона занимает большую часть цикла. Особенно это характерно для механизмов углового позиционирования. В связи с несимметричностью характеристик элементов привода наблюдается различие средних скоростей перемещения руки в зависимости от направления движения. На рис. 6.12 показаны зависимости средних скоростей поворота руки робота от угла поворота с учетом колебаний в конце хода — соср и без учета колебаний — D p .  [c.97]


Рассматриваемый регулятор снабжен упругой обратной связью и поэтому является изодромным ( равнобегущим ). Регулирующий орган в изодромном регуляторе перемещается с такой скоростью и принимает такие положения, какие необходимы, чтобы достигнуть быстрого затухания колебаний регулируемого параметра (в данном случае расхода газа). В то же время работа такого регулятора характеризуется отсутствием остаточной неравномерности регулирования, которая в регуляторах с жесткой обратной связью (электрическая автоматика ЦКТИ) может достигать 4—6% номинальной величины.  [c.125]

Регулирующим параметром в данной схеме является давление пара в барабане котла либо в общем паропроводе. Если давление пара сохраняется постоянным, то это значит, что в данный момент существует соответствие между расходом пара и его выработкой. Импульс по давлению пара берется в барабане котла (при работе в базовом режиме) либо в общем паровом коллекторе (при работе в регулирующем режиме). В качестве датчика давления пара используется электрический дистанционный манометр МЭД, преобразующий величину давления в электрический сигнал. На вход регулятора поступает такл<е сигнал по расходу топлива. При работе на газе для этой цели используется дифманометр, подключенный к диафрагме на газопроводе, а при работе на мазуте — датчик жесткой обратной связи исполнительного механизма. Для повышения качества регулирования в схему введена упругая отрицательная обратная связь по положению регулирующего органа. Поэтому в качестве наполнительного механизма в схеме используется ГИМ-Л2И, имеющий датч1ики жесткой и упругой обратных связей.  [c.243]

На вход измерительного блока регулятора поступают импульсы по уровню воды и расходу пара, а также сигнал упругой обратной связи. Даухимпульсный регулятор работает с опережением, так как импульс по расходу пара вызывает изменение подачи воды еще до того, как изменение расхода пара вызовет отклонение уровня в барабане котла. Такой способ регулирования значительно улучшает условия работы котла. Даухимпульсный изодромный регулятор поддерживает заданный уровень воды в барабане котла независимо от возмущения. В качестве сервомотора регулятора уровня используется гидравлический исполнительный механизм типа ГИМ-Д2И, обеспечивающий пропорционально-интегральпый закон регулирования.  [c.247]

При применении следящего привода подачи с замкнутой схемой управления наблюдается два вида погрешностей, снижающих точность перемещений рабочих органов 1) погрешности элементов привода подачи и рабочего органа, не охватываемые системой обратной связи 2) погрешности результатов измерения перемещения или угла поворота рабочего органа станка измерительным преобразователем. Первая группа погрешностей появляется в основном при применении систем обратной связи с круговым ИП. Преобразователи устанавливают на ходовом винте (рис. 59, 6) или измеряют перемещение рабочего органа через реечную передачу (рис. 59, в). В первом случае система обратной связи не учитывает погрешности передачи винт — гайка (накопленную погрешность по шагу ходового винта зазоры в соединении винт — гайка и в опорах винта упрутие деформации ходового винта, его опор и соединения винт — гайка тепловые деформации ходового винта и др.), а также погрешности рабочего органа (отклонения от прямолинейности и параллельности перемещений зазоры в направляющих упругие дефор-  [c.586]

Циклограммирование современных машин-автоматов и автоматических линий требует учета физических свойств обрабатываемых материалов, температурных условий, упругости звеньев, точности изготовления и монтажа деталей, накопления и использования информации в процессе обработки прн наличии обратных связей. Возможен следующий ориентировочный порядок расчета циклограмм машин-автоматов  [c.32]

Циклограммирование современных производственных машин-автоматов и автоматических линий требует учета физических свойств обрабатываемых материалов, температурных условий, упругости звеньев, наличия гидро- и пневмосвязей, точности изготовления и монтажа, накопления и использования информации в процессе обработки при наличии обратных связей. Необходима оценка точности воспроизведения циклограмм, вариантов обслуживания машин-автоматов и условий их эксплуатации. Требуется учет влияния ряда факторов на действительную производительность и реализацию теоретических циклов производственных автоматов, для чего необходимо применение методов теории вероятностей. При переходе от проектирования операционных машин к синтезу агрегатов и автоматических линий оказалось необходимым ввести новые категории циклов и произвести их научный анализ. Практика конструирования и эксплуатации автоматических линий показывает, что научно обоснованный синтез и анализ циклограмм позволяют значительно повысить производительность оборудования.  [c.337]


Смотреть страницы где упоминается термин Обратная связь упругая : [c.3]    [c.89]    [c.211]    [c.18]    [c.239]    [c.57]    [c.515]    [c.115]    [c.66]   
Теплотехнический справочник Том 2 (1976) -- [ c.758 ]

Теплотехнический справочник том 2 издание 2 (1976) -- [ c.758 ]



ПОИСК



Механизм регулирования скорости с упругой обратной связью

Механизм упругой обратной связи в регуляторах

Обратная связь

Регулятор астатический с упругой обратной связь

Регуляторы с упругими обратными связям

Связь упругая



© 2025 Mash-xxl.info Реклама на сайте