Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Канонические уравнения и их интегралы

Канонические уравнения и их интегралы  [c.289]

КАНОНИЧЕСКИЕ УРАВНЕНИЯ И ИХ ИНТЕГРАЛЫ 295  [c.295]

Составить канонические уравнения и найти их первые интегралы при прямолинейном движении материальной точки под действием восстанавливающей силы F= x где х — расстояние точки до притягивающего центра.  [c.118]

Так как уравнения (124 ), помимо произвольных постоянных, содержат аргументы р, q, то их можно рассматривать как п интегралов канонических уравнений, между тем как уравнения (124") вместе с q содержат q и потому представляют собой п первых квадратичных интегралов для первоначальных динамических уравнений Лагранжа, эквивалентных канонической системе.  [c.342]


Замечание. В 4 гл. 1 доказано, что канонические уравнения с гамильтонианом (5.1) не имеют даже действительнозначных аналитических интегралов. Однако это утверждение и только что доказанная теорема 3 независимы (т. е. их нельзя формально вывести одно из другого).  [c.125]

Но так как уравнение (6.98) является первым интегралом гамиль тоновой системы уравнений (6.23), (6.24), то после подстановки в функцию вместо <7 и р их значений, удовлетворяющих каноническим уравнениям, эта функция должна обратиться в постоянную  [c.175]

Знак - во второй группе уравнений (7.4) поставлен из соображений удобства (ср. с (7.3)). Напомним, что общее решение системы 2п дифференциальных уравнений Гамильтона — это семейство решений, зависящее от 2п произвольных постоянных (их можно выразить через начальные координаты и импульсы). Первое из уравнений (7.5) представляет инвариантное соотношение (по теореме 1), а функции д8/дс1,..., д8/дсп с учетом этого соотношения составляют набор независимых интегралов канонических уравнений Гамильтона. Так как выполнено неравенство (7.4), то по теореме о неявных функциях из второго соотношения (7.5) можно найти координаты х как функции от и 2и произвольных постоянных Ь,с. Подставляя полученные выражения в первое соотношение (7.5), получим импульсы в виде функций от 1, Ь, с.  [c.76]

Сравнивая уравнения (6.12) и (6.21), заключаем, что линии скольжения совпадают с характеристиками дифференциального уравнения (6.20). Решения уравнений характеристик осуществляются преимущественно с приведением их к так называемой канонической форме путем замены переменных х я у новыми переменными S и т]. На основании интегралов Генки (6.16) примем  [c.193]

Замечание. В динамике твердого тела для поиска интегралов, частных решений и анализа устойчивости обычно используется алгебраическая форма уравнений движения. Она также является предпочтительной при их численном интегрировании, вследствие того, что каноническая форма содержит особенности, связанные с вырождением локальных переменных в отдельных точках, например, углов Эйлера в полюсах сферы Пуассона, см. 2, 3).  [c.31]

Кроме того, здесь приведена теория плоского предельного равн весия связной среды, использующая предельное условие общего ви Дано подробное исследование уравнений плоского предельно равновесия и преобразование их к канонической системе. Оказываете что для некоторых частных видов предельного условия уравнен предельного равновесия имеют простые интегралы. Рассмотрены зада  [c.6]


Эти последние преобразования дифференциальных уравнений движения второго порядка системы притягивающихся или отталкивающихся точек во всех отношениях совпадают (не считая небольших различий в написании) с изящными каноническими формами, данными Лагранжем в Me anique Analytique, но нам казалось, что стоит вывести их заново из свойств нашей характеристической функции. Предположим (как это часто считается удобным и даже необходимым), что п точек системы не являются целиком свободными и подвержены не только своим собственным взаимным притяжениям и отталкиваниям, но связаны любыми геометрическими условиями и подвергаются влиянию любых внешних факторов, согласующихся с законом сохранения живой силы так, что число независимых отметок положения будет менее велико, а силовая функция менее проста, чем раньше. Тогда мы можем доказать при помощи рассуждения, очень сходного с предыдущим, что и при этих предположениях (которые, однако, дух динамики все более и более склонен исключать) накопленная живая сила, или действие V системы, представляет собой характеристическую функцию движения уже разобранного выше рода. Эта функция выражается тем же законом и формулой вариации, подверженной тем же преобразованиям, и обязана удовлетворять таким же способом, как и выше, конечной и начальной зависимости между ее частными производными первого порядка. Она приводит при помощи варьирования одной из этих двух зависимостей к тем же каноническим формам, которые были даны Лагранжем для дифференциальных уравнений движения, и дает, исходя из изложенных выше принципов, их промежуточные и конечные интегралы. По отношению же к тем мыслимым случаям, в которых закон живой силы не имеет места, наш метод также неприменим однако среди людей, наиболее глубоко занимавшихся математической динамикой вселенной, все более крепнет убеждение, что представление о таких случаях вызывается недостаточным пониманием взаимодействия тел.  [c.189]

В этой главе прежде исего будет рассказано о том, как можно описать движение механической систел1ы с 5 стеиенями свободы в 25-мерном фазовом пространстве. Канонические уравнения выводятся из уравнений Лагранжа, Канонические преобразования обсуждаются весь 1а кратко, более подробно рассматриваются свойства скобок Пуассона, их инвариантность относительно канонических преобразований, их значение для отыскания интегралов движения и связь с бесконечно малыми контактными преобразованиями. Бегло рассмотрен случай движения заряженной частицы Б электромагнитном поле. В последнем параграфе принцип наименьшего действия выводится из вариационного принципа Гамильтона и обсуждается вопрос о том, как молено рассматривать время на равных правах со всеми остальными координатами q .  [c.123]

Решение прямой задачи по методу сеток заключалось в численном решении в решетчатой области задачи Дирихле для гармонических функций Ф" (х, у) или а(х, у), или, наконец, задачи Неймана для функции Ф(х, у). Эти же задачи сводились к решению интегральных уравнений типа Фредгольма, причем интегралы вычислялись вдоль контуров профилей и их ядра сушественно зависели как от формы просЬилей, так и от положения точки на профиле (дуги профиля). По методу конформных отображений решение краевой задачи для функций Ф(х, у) и ФДх, у) отпадает, так как эти функции определены в канонических областя> , зато возникает новая задача нахождения конформного отображения данной решетчатой области на каноническую, т. е. построения отображающей функции z Z). Решение последней задачи, по существу, также оказывается задачей Дирихле для гармонических функций х( , т ), у( , т ) или aгg т ),  [c.145]

Только в том случае, когда производная дН/др / ( i) зависит лишь от первое уравнение решается в квадратурах. Аналогичное утверждение имеет место и для последующих уравнений. В общем случае необходимо решать всю систему дифференциальных уравнений совместно. Однако, если в дополнение к гамильтониану имеются другие интегралы движения, тогда число совместно решаемых уравнений может быть уменьшено на единицу для каждого дополнительного изолирующего интеграла движения. Изолирующим является такой интеграл, который в некоторых канонических переменных приводится к уравнению dH/dpi = / (qi). Преобразование к переменным действие — угол удовлетворяет даже более жесткому условию dHidpi == onst. Однако само преобразование зависит от существования изолирующего интеграла. Последний же может быть достаточно глубоко скрыт в динамике системы, так что обнаружить его не так-то легко. Изолирующие интегралы связаны с симметриями динамической системы, и симметрии могут оказаться очевидными, и тогда необходимое преобразование переменных, обеспечивающее решение в квадратурах, определяется непосредственно. Это справедливо, например, для частицы в поле центральных сил (см. ниже). Когда присутствие симметрии в системе не очевидно, как, например, в случае рассматриваемой ниже цепочки Тоды, найти изолирующий интеграл не просто. В настоящее время не существует какого-либо метода, позволяющего определить все изолирующие интегралы произвольной гамильтоновой системы или хотя бы установить их полное число. Поэтому не существует и никакого общего способа проверки на интегрируемость (N изолирующих интегралов) для системы с N степенями свободы. Если в системе нет очевидной симметрии, то догадаться о существовании скрытого изолирующего интеграла и обнаружить его часто удается лишь при помощи численных экспериментов.  [c.47]


Главы VII, VIII, IX и X посвящены плоскому деформированному состоянию. Проведено подробное исследование уравнений пластического равновесия и преобразование их к каноническим системам. Показано, что эти уравнения являются гиперболическими и даны эффективные приемы их численного. интегрирования. Изложен метод тригонометрических рядов, позволяющий получать решения некоторых задач в аналитической форме. Изучены уравнения пограничного слоя и выведены простые интегралы этих уравнений в напряжениях и скоростях.  [c.4]


Смотреть страницы где упоминается термин Канонические уравнения и их интегралы : [c.289]    [c.293]    [c.436]    [c.183]    [c.512]   
Смотреть главы в:

Небесная механика Основные задачи и методы Изд.2  -> Канонические уравнения и их интегралы



ПОИСК



Вид канонический

Интеграл уравнений

Интегралы канонических уравнени

Канонические уравнения уравнения канонические

Канонический интеграл

Уравнения канонические



© 2025 Mash-xxl.info Реклама на сайте